Note from WRIA 8 Acting Watershed Coordinator: This three-year work program is for planning purposes only. The WRIA 8 three-year work program has been reviewed for methodology only by the WRIA 8 Steering Committee and will be further reviewed in June 2006.

Introduction

This document provides the narrative for the WRIA 8 Prioritized 3-Year Implementation Plan. Both the capital and non-capital actions listed in the 3-Year plan reflect the most important known watershed priorities to start on a recovery trajectory. The 3-Year implementation matrix begins with adaptive management as the overarching biological, practical, and policy framework for implementation. Coordination is required to continue collaboration amongst the broad and diverse communities within WRIA 8 and to coordinate both adaptive management at the correct scale and implementation across jurisdictional boundaries. This section also includes a place holder for integration of all the Hs in the next 3 years.

The 3-Year list then covers the programmatic recommendations followed by the site specific project recommendations. This is repeated for each subarea, beginning with the Cedar then focuses on the Migratory, North Lake Washington, and Issaquah subareas. The matrix is further organized by specific watershed strategies for the site specific actions. Each action in the matrix identifies the primary limiting factor that needs to be addressed by that action. Attachment A: Limiting Factor Key lists and explains these limiting factors. For this level of detail for the programmatic actions, refer to Attachment B: WRIA 8 Programmatic Actions. Because there are over 100 programmatic actions and many are ongoing, they were summarized by major themes for the 3-Year Implementation Plan. Attachment B is the more detailed list of the programmatic actions necessary to recover Chinook salmon in WRIA 8.

Estimated costs for each action in the 3-Year matrix are based on the start-list cost estimates from the WRIA 8 Chinook Conservation Plan. The 3-Year Implementation Plan was developed in consultation with the WRIA 8 Steering Committee, Technical Committee, Public Outreach Committee, and the Land Use Sub-committee.

The narrative explains the conservation and practical rationale for the 3-Year matrix and discusses the NOAA’s Technical Review Team’s (TRT) comments which informed and influenced the development of the 3-Year matrix. The conservation rationale explains the biological imperatives which necessitates the importance of actions in particular areas and the need to improve landscape-level processes throughout WRIA 8. The next section in the narrative talks about
the practical considerations that influence the development of the 3-Year list. The final section describes the ways in which the WRIA 8 3-year action list reflects TRT comments and guidance received since completion of the Puget Sound Recovery Plan.
Conservation Rationale
The current risk of extinction posed to the Cedar River and Sammamish River Chinook populations is extreme and must be reduced through actions that create habitat conditions that support viability of each population. Due to the declining productivity trend of the Cedar population and the fact that the Sammamish River population is supported by a hatchery, the Technical Committee hypothesizes that a relatively higher priority should be placed on risk reduction for the Cedar River Chinook population. However, the Technical Committee also recommends that habitat protection and restoration actions are needed throughout WRIA 8 in order to provide habitat diversity that can support the genetic diversity of multiple salmon species over time.

Cedar River Chinook
The greatest source of risk comes from reduction in habitat productivity and the potential loss of the instream juvenile rearing life history strategy. In addition, hatchery influences pose a significant risk to the genetic diversity of the population. Rehabilitation of the Cedar River Chinook population requires conservation actions to protect and restore habitat in the Tier 1, Tier 2, and migratory subareas. The main source of productivity for this population is in the Tier 1 subareas along the mainstem of the Cedar River. Restoration of these subareas is important to increase productivity and create habitat conditions that support the instream juvenile rearing life history strategy (specific the fry colonization life stage). Hypotheses about conservation actions are focused on the protection of water quality and high quality instream habitats used for spawning and juvenile rearing, such as intact pool habitats, riparian buffers, and LWD. Restoration hypotheses are focused on increasing the availability of pool habitats and off-channel areas for juvenile Chinook by reconnecting floodplain areas, adding LWD, and re-planting riparian vegetation. In addition to restoration actions in the mainstem Cedar, juvenile Chinook would benefit from shoreline restoration actions designed to improve rearing and refuge habitat and reduce predator efficiency in the south end of Lake Washington and in the Ship Canal. Shoreline restoration activities should focus on removal of bulkheads and rip-rap to create sandy, shallow habitat areas. These restoration actions should be focused on areas adjacent to the mouth of the Cedar River and in nearby areas of southern Lake Washington, along the south end of Mercer Island, at the mouths of small creeks, and in Union Bay.

Migratory and Rearing Areas
In order to create and maintain habitat conditions that support viable populations of Chinook, conservation actions should address habitats used at different stages of the Chinook life cycle. Restoration and enhancement of the migratory and rearing areas (including the nearshore, estuary, Lake Washington, the Ship Canal and Locks, the Sammamish River, and Lake Sammamish) have a high potential to benefit Chinook productivity and abundance, and in many cases could benefit multiple populations. In the lakes, actions should focus on creating
habitat conditions that improve rearing and refuge opportunities, such as the restoration of sandy shallow water areas and restoration of stream deltas. In the Sammamish River, re-meandering of the river will restore connections with cool groundwater while increasing habitat diversity, benefiting juvenile out-migrants as well as returning adults. High temperatures in the Ship Canal during the juvenile out-migration can become extremely stressful (>19 C) and affect the behavior and success of smolts in reaching Puget Sound. High temperatures may also affect predation rates in the Ship Canal, especially those of bass. Conservation actions should focus on providing habitat refuge for Chinook and reducing high temperatures that drive predation. Finally, the nearshore and estuary subareas are critical for migration and rearing of Chinook populations (as well as other species) from multiple WRIAs. While there are relatively greater uncertainties about nearshore habitat and Chinook use of that habitat, experimental approaches to the protection of functioning habitat and the restoration of ecosystem processes (particularly sediment supply) and habitats (particularly eelgrass beds and ‘pocket’ estuaries) should be implemented.

Sammamish River Chinook: North Lake Washington Sub-Population

The low abundance of the NLW Chinook sub-population results from reduced habitat productivity and severe reduction in the spatial distribution of the population from several stream systems with approximately equal contribution to the population (Bear, Little Bear, North, and Kelsey Creeks) to one stream system (Bear Creek) that is the core of the population. Although the inclusion of Issaquah Creek increases the overall spatial distribution of the Sammamish population, improved habitat productivity in the North Lake Washington tributaries is essential to increase the distribution and viability of the naturally-spawning component of the population. In order to rehabilitate this population and reduce the risk of extinction, conservation actions should be targeted at protecting the existing source of productivity in the Bear Creek system, restoring the habitat capacity of the Tier 2 NLW tributary systems, and restoring the channel meanders and pool habitats that support juvenile rearing and adult migration in the Sammamish River corridor.

Sammamish River Chinook: Issaquah Creek Chinook Sub-Population

The Technical Committee is concerned about the risk to independent Chinook populations posed by straying of hatchery and naturally-produced hatchery-origin Chinook. The Technical Committee calls on NOAA fisheries and the co-managers to implement the recommendations of the Hatchery Science Review Group (HSRG, 2004) and make any other appropriate management changes at the Issaquah and other Puget Sound hatcheries that are necessary to reduce risk to the Chinook populations in WRIA 8 and promote local adaptations.

Within the Issaquah system, conservation actions for the Issaquah Chinook sub-population should focus on protection of existing high-quality habitat in the Issaquah system. Habitat restoration actions are intended to increase habitat
diversity and enhance the juvenile rearing and egg incubation life stages. Increased habitat productivity in the Issaquah system is also intended to support hatchery objectives for naturally origin broodstock, as recommended by the HSRG. The high proportion of Issaquah hatchery contributions to spawning in the Cedar River and Bear Creek continues to be a concern, and additional work will be necessary during 2006 to identify and agree on actions to reduce the percentage of hatchery-origin Chinook in the Cedar River and North Lake Washington tributaries to levels that are consistent with HSRG hatchery reform recommendations.

H-Integration
The discussion of H-integration in the July 2005 WRIA 8 Salmon Conservation Plan is limited to a discussion of the ramifications of potential Chinook population scenarios for hatchery and habitat management objectives. The Plan generally supports implementation of the Hatchery Science Review Group’s (HSRG) recommendations for WRIA 8, but does not make specific hatchery or harvest recommendations beyond noting the risk that continued hatchery contributions to the independent Cedar population could result in reduced genetic diversity.

Since ratification of the Plan, WRIA 8 has completed additional genetic analysis of WRIA 8 Chinook and adopted a two-population approach that is consistent with the TRT’s population determination. As described in Chapter 4 of the Plan, the adoption of the 2 population scenario has led to the inclusion of restoration actions intended to benefit the hatchery component of the Sammamish Chinook population in Issaquah Creek. While this hatchery-supported sub-population faces the lowest risk relative to the Cedar population and the North Lake Washington sub-population, habitat restoration in Issaquah would support the shared objective of increasing natural-origin broodstock at the Issaquah hatchery.

As of December 2005, the WRIA 8 Steering Committee is pursuing stronger and more transparent integration of habitat, hatchery, and harvest objectives. We anticipate that the H-integration work group convened by WDFW will increase understanding of the objectives of each H, and will generate specific programmatic and project actions to further integrate the Hs. This integration is essential if we are to ensure that our collective actions are complementary and mutually support the conservation and recovery of Chinook and other listed salmonids in WRIA 8.

Practical Rationale
Practical Rationale Overview
Given the high risk of extinction currently faced by the Cedar Chinook population and the naturally-spawning portion of the Sammamish Chinook population, WRIA 8’s proposed 3-year action list focuses on programmatic and capital projects that
will secure these populations so that the risk does not increase any further. In addition, habitat restoration actions are proposed to increase Chinook productivity. However, we recognize that habitat actions have a lag time before full benefits of the actions are seen, making it essential that we also address direct sources of mortality during the first three years of implementation. These direct sources of mortality include passage at the Locks and predation in the Lakes.

As described in the Conservation Strategy, the Cedar Chinook population has the highest certainty of being independent due to hatchery influence in the Sammamish population, and the highest risk of extinction due to the declining productivity trajectory. However, the natural spawning component of the Sammamish population is also at high risk with low productivity and extremely low abundance. Due to the high risk faced by both the Cedar Chinook population and the naturally spawning component of the Sammamish population, and the fact that recovery of both populations will require a much longer timeframe than the 10-year Puget Sound Recovery Plan, we advocate implementing actions for both Chinook populations. While the Cedar population is the higher priority, we cannot afford to lose functioning habitat for the Sammamish population. We also cannot afford to delay restoration efforts due to the time lag necessary for habitat restoration actions to begin to confer benefits for Chinook life stages. For these reasons actions are included for the North Lake Washington tributaries and the Sammamish River. Restoration actions are included for Issaquah Creek, as increased natural-origin broodstock will be needed to meet integrated hatchery management objectives and reduce the possibility that broodstock would be collected from Bear Creek or even the Cedar River. Hatchery and harvest management actions are necessary to reduce the risk to genetic diversity while habitat actions to increase natural production proceed.

Practical Rationale for the Cedar River Chinook Population

It is hypothesized that conservation actions for the Cedar River Chinook population should focus on increasing productivity of the fry colonization and 0-age active rearing life stages by improving rearing conditions in the Cedar River. Because restoration potential in the river is approximately equal to the potential in Lake Washington, actions should also reduce predator efficiency in Lake Washington by restoring shallow water habitat, overhanging vegetation, and creek mouths. In addition, direct mortality of juveniles and adult salmon should be reduced by improving passage and estuarine mixing at the Ballard Locks. Finally, nearshore habitat, particularly sediment supply processes and pocket estuary connections should be restored to benefit Chinook salmon and forage fish from WRIA 8 and other watersheds in Puget Sound.

Efforts to improve juvenile rearing habitat in the Cedar are focused around the 'landslide reach' (EDT Reach 4), site of a landslide during the 2001 Nisqually earthquake that altered the mainstem channel in and around Ron Regis park and
Three-Year Implementation Plan Narrative for Lake Washington/Cedar/
Sammamish Watershed (WRIA 8)
April 2006

deposited a considerable amount of LWD in the channel. This site is considered a ‘reference’ reach for restoration of the Cedar River. EDT modeling indicates that this reach has the highest protection potential in the Cedar River as a result of two things: (1) high levels of habitat diversity and (2) the fact that this reach is lower in the river and is therefore used by a greater number of juvenile Chinook as they move downstream as fry.

Capital projects during the first three years of implementation attempt to increase fry colonization and juvenile rearing success by protecting and expanding areas of floodplain connectivity in and around areas that have high Chinook spawning concentrations. These actions include:

1. Protecting the last private parcel upstream of Ron Regis park within the floodplain of the landslide ‘reference’ reach (C213). (This project code is the nomenclature used in the WRIA 8 Chinook Conservation Plan and can be used to reference more information in the Conservation Plan about this project.)

2. Protecting functioning floodplain habitat downstream of Chinook spawning concentrations and adjacent to existing and potential restoration sites (C228 Jones Reach, C232 Belmondo, C253 Dorre Don Meanders). These protection actions are necessary to ensure that no further degradation of floodplain connectivity occurs, and to maximize the beneficial impacts of adjacent restoration projects.

3. Levee setbacks and/or removals to increase floodplain connectivity (C235 Rainbow Bend Levee Setback, C222 Cedar Rapids/Ricardi)

4. Floodplain buyouts to enable future floodplain reconnections (C236 Rainbow Bend, C244 218th Place Side-Channel, C245 Mouth of Taylor Creek)

Within Lake Washington, restoration actions are focused on the southern end of the lake to benefit the fry-migrant life stage that rears in the lake, as well as migrating smolts. We hypothesize that restoration of shallow sandy habitat with overhanging vegetation will reduce predator abundance and efficiency, and result in increased juvenile survival. Lake restoration projects have higher uncertainties than the in-stream habitat projects, and the proposed projects build on pre- and post-project monitoring of recent restoration project in Seward Park and the SRFB-funded Rainier Beach park restoration. The proposed list anticipates funding one lake restoration project per year in the south end of the lake, with design modifications and improvements based on on-going project monitoring.

Lake restoration actions in the first three years are focused on publicly owned park land, and attempt to leverage other actions such as master planning for the Mapes Creek neighborhood. Because approximately 95% of the lake shoreline is privately owned, programmatic actions in the first three years promote shoreline and riparian restoration actions and reduction in over-water structures on private property. This includes demonstration sites intended to increase landowner willingness to adopt more environmentally-friendly practices. These
programmatic actions are essential if we are to successfully restore lake shoreline habitats without buying out large areas of some of the most expensive real estate in the entire state of Washington.

In the Ship Canal and Locks, considerable work has been completed with the Corps of Engineers to dramatically increase survival at the Ballard Locks through the installation of the smolt slides and other modifications. Over the next three years we anticipate continued improvements at the Locks to reduce direct mortality of both juveniles and adults by increasing fish use of either the smolt slides or the fish ladder, and operational changes to increase the area of fresh and saltwater mixing. In addition, the three-year list includes habitat restoration and removal of overwater structures immediately downstream of the Ballard Locks to benefit juvenile Chinook.

The nearshore component of the WRIA 8 plan includes significant uncertainties. Actions during the first three years are focused on identifying specific locations where feeder bluff connections to the nearshore environment can be restored, and restoring pocket estuaries where possible. The railroad severely constrains restoration opportunities in WRIA 8, making a feasibility study essential for WRIA 8 to implement feeder bluff projects throughout the 10-year plan horizon. Beach seining efforts along the WRIA 8 and WRIA 9 shoreline show that the nearshore area and Salmon Bay are used by juvenile Chinook from many WRIAs, and we therefore hypothesize that these nearshore restoration projects will increase juvenile rearing habitat for Chinook from multiple Puget Sound populations. Finally, it is hypothesized that increased effort to develop nearshore projects is necessary to support the viability of the WRIA 8 partnership, as a strengthened nearshore component of our conservation strategy is necessary to maintain participation.

Sammamish River Chinook Population Practical Rationale
As noted above, WRIA 8 has identified a relatively higher risk for the Cedar Chinook population. This does not mean, however, that no actions are necessary for the Sammamish population. The naturally spawning sub-population has low abundance and low productivity, and actions are necessary in the near-term to secure this population from any increase in extinction risk. Actions are also necessary to ensure that the habitat potential exists to support recovery in the future as the population productivity increases and the distribution expands into the Tier 2 North Lake Washington tributaries (e.g. Little Bear and North Creeks). This requires programmatic actions to maintain and restore landscape level processes as well as capital projects to acquire functioning habitat that is at risk of development. During the first three years these acquisitions include headwater areas in Upper Bear Creek, Cottage/Cold Creek, Little Bear Creek, and North Creek to maintain forest cover, water quality, and hydrologic processes. Each of these actions builds on previous efforts to protect headwater areas, and these
acquisitions to protect ecosystem processes are cheaper and more effective than engineered solutions to mitigate the impacts of potential future development.

Finally, WRIA 8’s proposed actions during the first three years attempt to leverage existing efforts by the City of Redmond and the Army Corps of Engineers working with regional partners to protect and restore the Sammamish River and Bear Creek corridors. Specific actions in the first three years include the Sammamish River Transition Zone restoration, which is intended to improve floodplain connectivity, groundwater connectivity, and riparian function at the head of the Sammamish River. We have also included a feasibility and design study to restore tributary confluences with the Sammamish River to provide areas of cold groundwater refuges for migrating adult Chinook. This feasibility study would result in specific restoration projects that could be supported by individual jurisdictions in the Sammamish River corridor for SRFB, Corps, and other funding beginning in 2009. The City of Redmond is expanding previous channel restoration efforts in Bear Creek to include the lower 3000’ of Bear Creek at the confluence with the Sammamish River. The City is also working to protect approximately 120 acres at the confluence of Bear and Evans Creeks (the Keller Farm property) from development and establish a wetland mitigation bank, with restoration work likely beginning after 2009.

Issaquah Creek Chinook are the hatchery-driven sub-population of the Sammamish River independent Chinook population. As described in the ‘Consistency with TRT Recommendations’ section below, WRIA 8 has recently adopted a two-population approach that is consistent with the TRT’s population determination. Our objectives for this sub-population are to secure functioning habitat and restore habitat productivity. Improved habitat productivity in Issaquah Creek would help the hatchery managers achieve hatchery reform objectives for increased natural-origin broodstock, and decrease the risk that broodstock would be collected from either Bear Creek or the Cedar River to supply the hatchery. Habitat protection and restoration actions in the Issaquah basin are also necessary in the first three years of implementation to strengthen the WRIA partnership and enhance connections with stakeholders in this basin, and to support the hatchery management objectives of the co-managers.

Much of the headwater area of Issaquah Creek is protected, with the notable exception of the 80-acre Taylor Mountain Forest in-holding. Actions proposed for the first three years would secure this area from development, and remove a culvert and forest road in the Taylor Mountain Forest that pose a high risk of generating a sediment plume if the culvert is blown out in the next high-flow event. Fine sediment plumes in the past have shut down the Issaquah hatchery and clogged spawning gravels. Additional actions include acquisition of floodplain parcels to enable restoration of floodplain connectivity, riparian function, and LWD along the mainstem of Issaquah Creek, particularly at tributary confluences.
Adaptive Management and Monitoring Practical Rationale
During the first three years of plan implementation we will continue to fund actions that maintain and enhance the WRIA 8 partnership, as well as actions that support improvements to the plan as we learn more about how are actions impact Chinook populations and their habitat. Specific actions include cumulative effectiveness monitoring of Chinook populations via spawner surveys and outmigrant trapping, along with implementation of the EPA’s EMAP protocols to evaluate the status and trends of landscape level and instream habitat conditions. We have also included annual updates and revisions to the WRIA 8 plan in response to new information, and anticipate that these revisions will include increased coordination of habitat, harvest, and hatchery management actions as a result of the regional H-integration effort during 2006.

Practical Considerations Regarding Costs and Timing
The WRIA 8 Plan estimated approximately $17 million per year for habitat protection and restoration actions. This proposed 3-year implementation list is slightly higher than this estimate for two primary reasons: the need to acquire property now in order to secure it from potential future development, and the need to acquire sufficient Cedar floodplain area to design and construct floodplain restoration actions within the 10-year timeframe at the most biologically relevant and effective scale. A prime example of a floodplain restoration action at the right scale is the Rainbow Bend – Cedar Grove Road floodplain buyout and restoration. The upstream end of the meander bend is currently being bought out using SRFB and FEMA funds. The parcels in the downstream portion of the meander bend have been a top priority for acquisition since the 1993 Cedar River Basin Plan, but have never been acquired due to high cost and other feasibility issues. For this reason it was anticipated that the restoration action at the Cedar Grove levee would be a small scale setback that would restore connectivity but would still provide flood protection for the downstream parcels. Since completion of the WRIA 8 Plan the feasibility of acquiring the downstream parcels has improved, and we may be able to do a levee setback or removal for similar construction costs but significantly higher benefits because the project restores connectivity in the entire meander bend.

Consistency with Technical Recovery Team Recommendations
WRIA 8’s 3-year action implementation list attempts to respond to comments received from the TRT in response to the July 2005 Plan. The list reflects TRT guidance in the following ways:

- **Future Development**: One of the most fundamental critiques from the TRT was that the WRIA correctly identified future development and land conversion as the most significant threat to the long-term conservation and recovery of Chinook, but relied on a menu of voluntary actions that did
not provide certainty that this threat would be adequately addressed. The programmatic actions included on the list and described in this submittal are intended to support the efforts of local governments and individual citizens to reduce the impact of existing and proposed development on landscape processes and in-stream habitat. These programmatic activities are recognized by the WRIA partners as fundamental to the success of our Chinook conservation efforts. In addition, we recognize that our ability to implement capital projects in many areas of WRIA 8 is contingent upon landowner support that is generated by programmatic activities. Finally, regional investments in habitat protection and restoration capital projects will be insufficient to achieve our salmon conservation objectives in the absence of programmatic activities that protect and restore landscape-scale processes that create and maintain aquatic habitat.

- **Treatment phase of EDT:** The July 2005 Plan includes habitat conservation actions hypothesized to address the ‘diagnosis’ of habitat protection and restoration priorities from the EDT habitat model. Because the effectiveness of these proposed actions had not been evaluated, the TRT noted that WRIA 8 plan did not include restoration actions. We have since completed an evaluation of the effectiveness of the restoration actions identified on the start list. These results indicate that instream restoration start list actions alone will increase productivity, juvenile and adult abundance, and life history diversity, but that additional floodplain connection actions beyond the start-list will be necessary to achieve our objectives. For the Sammamish population, results indicate that our instream habitat restoration actions will improve VSP attributes, but that additional landscape-level restoration actions to restore sediment and hydrologic processes will be necessary to achieve our 10-year population objectives. For both populations, modeling results underscore the fundamental importance of programmatic actions. More detailed information describing these results is available at Shared Strategy’s request.

- **H-Integration:** The TRT noted that integration of hatchery and habitat actions is a top priority for WRIA 8. Since completion of the WRIA 8 Plan, several WRIA 8 partners are participating in regional H-integration effort led by WDFW to increase certainty that actions across the Hs are complementary.

- **Cedar River HCP:** The TRT also notes that the WRIA 8 plan does not evaluate whether the flows identified in the Cedar River Habitat Conservation Plan are sufficient to support Chinook recovery. The WRIA partners are supportive of collaborative efforts to ensure that both Plans approved by NOAA are consistent and complementary.
Three-Year Implementation Plan Narrative for Lake Washington/Cedar/
Sammamish Watershed (WRIA 8)
April 2006

• **Landsburg Fish Passage:** The TRT notes that the WRIA plan does not specifically state whether the passage of ad-clipped fish at the Landsburg Diversion Dam is consistent with ESA conservation objectives. As previously noted, the WRIA 8 Plan identifies hatchery contributions to spawning in the Cedar River as a significant risk to the diversity of the population. This concern applies throughout the Cedar River system, and we hope the regional H-integration effort will help to identify potential solutions.

Conclusion and Policy Rationale

The conservation rationale, the practical rationale, and the Technical Recovery Team recommendations focus the policy direction to address the entire watershed and associated landscape-level processes through programmatic actions while continuing to invest in site specific protection and restoration projects in core geographic areas in WRIA 8. By carefully considering the biological, practical, and TRT review, the 3-Year Implementation Plan emphasizes the most efficient and effective known options towards conservation of Chinook populations within WRIA 8.

The 3-Year Implementation List, as a derivative of the WRIA 8 Chinook Salmon Conservation Plan, rests on a solid scientific foundation. Implementation actions are developed from an understanding of the relationship between habitat and life-history expressions of Chinook salmon. Similar relationships exist between habitat and other salmon species. By implementing the actions on the 3-Year Implementation Plan, other salmon species should benefit from improvements in habitat. The level of certainty about the benefits to Chinook and other species if the recovery plan actions are implemented is relatively good if conditions were held constant. With constantly changing habitat conditions, the need to understand the value and efficacy of ongoing investments and to capitalize on future management and policy decisions requires a framework to monitor results and to translate that to effective policy and re-evaluation of current recovery actions.

The 3-Year implementation matrix begins with adaptive management as the overarching biological, practical, and policy framework for implementation within a collaborative process.
Draft Three-Year Watershed Implementation Priorities for WRIA 8

Adaptive Management

<table>
<thead>
<tr>
<th>Priority Tier</th>
<th>Priority Level</th>
<th>Action</th>
<th>Project/program</th>
<th>Total cost of first three years</th>
<th>Proposed BR if (grants) share</th>
<th>Source of other funds</th>
<th>Year 1 Cost</th>
<th>Year 2 Cost</th>
<th>Year 3 Cost</th>
<th>Likely end date</th>
<th>Additional funds needed after 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>1</td>
<td>Cedar River - Restore Floodplain Connectivity to Increase In-Stream Juvenile Rearing Productivity</td>
<td>Co-Managers and Multiple Stewards</td>
<td>$2,225,000</td>
<td>82%</td>
<td>$175,000</td>
<td>$1,050,000</td>
<td>$375,000</td>
<td>$375,000</td>
<td>2011</td>
<td>$0</td>
</tr>
</tbody>
</table>

Cedar

<table>
<thead>
<tr>
<th>Priority Tier</th>
<th>Priority Level</th>
<th>Action</th>
<th>Project/program</th>
<th>Total cost of first three years</th>
<th>Proposed BR if (grants) share</th>
<th>Source of other funds</th>
<th>Year 1 Cost</th>
<th>Year 2 Cost</th>
<th>Year 3 Cost</th>
<th>Likely end date</th>
<th>Additional funds needed after 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>1</td>
<td>Cedar River - Restore Floodplain Connectivity to Increase In-Stream Juvenile Rearing Productivity</td>
<td>Co-Managers and Multiple Stewards</td>
<td>$2,225,000</td>
<td>82%</td>
<td>$175,000</td>
<td>$1,050,000</td>
<td>$375,000</td>
<td>$375,000</td>
<td>2011</td>
<td>$0</td>
</tr>
<tr>
<td>Tier 1</td>
<td>2</td>
<td>Cedar River - Restore Floodplain Connectivity to Increase In-Stream Juvenile Rearing Productivity</td>
<td>Co-Managers and Multiple Stewards</td>
<td>$2,225,000</td>
<td>82%</td>
<td>$175,000</td>
<td>$1,050,000</td>
<td>$375,000</td>
<td>$375,000</td>
<td>2011</td>
<td>$0</td>
</tr>
<tr>
<td>Tier 1</td>
<td>3</td>
<td>Cedar River - Restore Floodplain Connectivity to Increase In-Stream Juvenile Rearing Productivity</td>
<td>Co-Managers and Multiple Stewards</td>
<td>$2,225,000</td>
<td>82%</td>
<td>$175,000</td>
<td>$1,050,000</td>
<td>$375,000</td>
<td>$375,000</td>
<td>2011</td>
<td>$0</td>
</tr>
</tbody>
</table>

Water Quality

<table>
<thead>
<tr>
<th>Priority Tier</th>
<th>Priority Level</th>
<th>Action</th>
<th>Project/program</th>
<th>Total cost of first three years</th>
<th>Proposed BR if (grants) share</th>
<th>Source of other funds</th>
<th>Year 1 Cost</th>
<th>Year 2 Cost</th>
<th>Year 3 Cost</th>
<th>Likely end date</th>
<th>Additional funds needed after 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>1</td>
<td>Cedar River - Restore Floodplain Connectivity to Increase In-Stream Juvenile Rearing Productivity</td>
<td>Co-Managers and Multiple Stewards</td>
<td>$2,225,000</td>
<td>82%</td>
<td>$175,000</td>
<td>$1,050,000</td>
<td>$375,000</td>
<td>$375,000</td>
<td>2011</td>
<td>$0</td>
</tr>
<tr>
<td>Tier 1</td>
<td>2</td>
<td>Cedar River - Restore Floodplain Connectivity to Increase In-Stream Juvenile Rearing Productivity</td>
<td>Co-Managers and Multiple Stewards</td>
<td>$2,225,000</td>
<td>82%</td>
<td>$175,000</td>
<td>$1,050,000</td>
<td>$375,000</td>
<td>$375,000</td>
<td>2011</td>
<td>$0</td>
</tr>
<tr>
<td>Tier 1</td>
<td>3</td>
<td>Cedar River - Restore Floodplain Connectivity to Increase In-Stream Juvenile Rearing Productivity</td>
<td>Co-Managers and Multiple Stewards</td>
<td>$2,225,000</td>
<td>82%</td>
<td>$175,000</td>
<td>$1,050,000</td>
<td>$375,000</td>
<td>$375,000</td>
<td>2011</td>
<td>$0</td>
</tr>
</tbody>
</table>

Fungeen Connectivity

<table>
<thead>
<tr>
<th>Priority Tier</th>
<th>Priority Level</th>
<th>Action</th>
<th>Project/program</th>
<th>Total cost of first three years</th>
<th>Proposed BR if (grants) share</th>
<th>Source of other funds</th>
<th>Year 1 Cost</th>
<th>Year 2 Cost</th>
<th>Year 3 Cost</th>
<th>Likely end date</th>
<th>Additional funds needed after 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>1</td>
<td>Cedar River - Restore Floodplain Connectivity to Increase In-Stream Juvenile Rearing Productivity</td>
<td>Co-Managers and Multiple Stewards</td>
<td>$2,225,000</td>
<td>82%</td>
<td>$175,000</td>
<td>$1,050,000</td>
<td>$375,000</td>
<td>$375,000</td>
<td>2011</td>
<td>$0</td>
</tr>
<tr>
<td>Tier 1</td>
<td>2</td>
<td>Cedar River - Restore Floodplain Connectivity to Increase In-Stream Juvenile Rearing Productivity</td>
<td>Co-Managers and Multiple Stewards</td>
<td>$2,225,000</td>
<td>82%</td>
<td>$175,000</td>
<td>$1,050,000</td>
<td>$375,000</td>
<td>$375,000</td>
<td>2011</td>
<td>$0</td>
</tr>
<tr>
<td>Tier 1</td>
<td>3</td>
<td>Cedar River - Restore Floodplain Connectivity to Increase In-Stream Juvenile Rearing Productivity</td>
<td>Co-Managers and Multiple Stewards</td>
<td>$2,225,000</td>
<td>82%</td>
<td>$175,000</td>
<td>$1,050,000</td>
<td>$375,000</td>
<td>$375,000</td>
<td>2011</td>
<td>$0</td>
</tr>
</tbody>
</table>

Bolen Creek

<table>
<thead>
<tr>
<th>Priority Tier</th>
<th>Priority Level</th>
<th>Action</th>
<th>Project/program</th>
<th>Total cost of first three years</th>
<th>Proposed BR if (grants) share</th>
<th>Source of other funds</th>
<th>Year 1 Cost</th>
<th>Year 2 Cost</th>
<th>Year 3 Cost</th>
<th>Likely end date</th>
<th>Additional funds needed after 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>1</td>
<td>Cedar River - Restore Floodplain Connectivity to Increase In-Stream Juvenile Rearing Productivity</td>
<td>Co-Managers and Multiple Stewards</td>
<td>$2,225,000</td>
<td>82%</td>
<td>$175,000</td>
<td>$1,050,000</td>
<td>$375,000</td>
<td>$375,000</td>
<td>2011</td>
<td>$0</td>
</tr>
<tr>
<td>Tier 1</td>
<td>2</td>
<td>Cedar River - Restore Floodplain Connectivity to Increase In-Stream Juvenile Rearing Productivity</td>
<td>Co-Managers and Multiple Stewards</td>
<td>$2,225,000</td>
<td>82%</td>
<td>$175,000</td>
<td>$1,050,000</td>
<td>$375,000</td>
<td>$375,000</td>
<td>2011</td>
<td>$0</td>
</tr>
<tr>
<td>Tier 1</td>
<td>3</td>
<td>Cedar River - Restore Floodplain Connectivity to Increase In-Stream Juvenile Rearing Productivity</td>
<td>Co-Managers and Multiple Stewards</td>
<td>$2,225,000</td>
<td>82%</td>
<td>$175,000</td>
<td>$1,050,000</td>
<td>$375,000</td>
<td>$375,000</td>
<td>2011</td>
<td>$0</td>
</tr>
<tr>
<td>Priority Tier</td>
<td>Action</td>
<td>Likely sponsor</td>
<td>Project or program</td>
<td>Project/stage</td>
<td>Total cost of first three years</td>
<td>Proposed SRFB (or grant) share</td>
<td>Local share or other funding</td>
<td>Source of other funds</td>
<td>Year 1 Scope</td>
<td>Year 1 Cost</td>
<td>Year 2 Scope</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>---------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Tier 1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Tier 2</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Tier 3</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Tier 4</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Tier 1
Increase incentives programs
- **Multiple**
 - **Project/program:** NLW Tribs - Channel Complexity and Large Woody Debris to support juvenile rearing and fry colonization
 - **Likely sponsor:** Capital projects and programs
 - **Advisory Council:** Tier 1
 - **Status:** Ongoing need
 - **Total cost of first three years:** $1,585,000
 - **Proposed SRFB (per grant share):** $762,500
 - **Local share of other funding:** $762,500
 - **Sources of other funds:** Funding, materials, and mix of other resources

- **Multiple**
 - **Project/program:** NLW Tribs - Channel Complexity and Large Woody Debris to support juvenile rearing and fry colonization
 - **Likely sponsor:** Capital projects and programs
 - **Advisory Council:** Tier 1
 - **Status:** Ongoing need
 - **Total cost of first three years:** $2,466,000
 - **Proposed SRFB (per grant share):** $1,233,000
 - **Local share of other funding:** $1,233,000
 - **Sources of other funds:** Funding, materials, and mix of other resources

- **Multiple**
 - **Project/program:** NLW Tribs - Channel Complexity and Large Woody Debris to support juvenile rearing and fry colonization
 - **Likely sponsor:** Capital projects and programs
 - **Advisory Council:** Tier 1
 - **Status:** Ongoing need
 - **Total cost of first three years:** $617,000
 - **Proposed SRFB (per grant share):** $308,500
 - **Local share of other funding:** $308,500
 - **Sources of other funds:** Funding, materials, and mix of other resources

Support existing regulations that benefit stream and lake enhancement projects
- **Multiple**
 - **Project/program:** NLW Tribs - Channel Complexity and Large Woody Debris to support juvenile rearing and fry colonization
 - **Likely sponsor:** Capital projects and programs
 - **Advisory Council:** Tier 1
 - **Status:** Ongoing need
 - **Total cost of first three years:** $2,321,000
 - **Proposed SRFB (per grant share):** $1,160,500
 - **Local share of other funding:** $1,160,500
 - **Sources of other funds:** Funding, materials, and mix of other resources

Total Programmatic non-capital need: $1,221,000

Local Governments
- **Capital projects and programs**
- **Advisory Council:** Tier 1
- **Status:** Ongoing need
- **Project:** Improve Juvenile Rearing Habitat
- **Proposed**
- **Year 1 Cost:** $57,000
- **Year 2 Cost:** $30,000
- **Year 3 Cost:** $22,000
- **Total cost of first three years:** $110,000
- **Proposed SRFB (per grant share):** $39,600
- **Local share of other funding:** $39,600
- **Sources of other funds:** Funding, materials, and mix of other resources

Lakes - Restore Shoreline Complexity to Increase Juvenile Rearing and Migratory Survival
- **Advisory Council:** Tier 1
- **Status:** Ongoing need
- **Project:** Restore Shoreline Complexity to Increase Juvenile Rearing and Migratory Survival
- **Proposed**
- **Year 1 Cost:** $39,000
- **Year 2 Cost:** $39,000
- **Year 3 Cost:** $39,000
- **Total cost of first three years:** $1,17,000
- **Proposed SRFB (per grant share):** $117,000
- **Local share of other funding:** $117,000
- **Sources of other funds:** Funding, materials, and mix of other resources

Priority:** Tier 1
Priority:** Tier 1
Priority:** Tier 1
Priority:** Tier 1

South Sound Basin
Washington Departments
- **Advisory Council:** Tier 1
- **Status:** Ongoing need
- **Project:** Improve Juvenile Rearing Habitat
- **Proposed**
- **Year 1 Cost:** $507,000
- **Year 2 Cost:** $507,000
- **Year 3 Cost:** $507,000
- **Total cost of first three years:** $1,521,000

Coastal processes
- **Advisory Council:** Tier 1
- **Status:** Ongoing need
- **Project:** Explore opportunities to restore small streams (including Mt. Baker Creek) to benefit salmon
- **Proposed**
- **Year 1 Cost:** $681,000
- **Year 2 Cost:** $681,000
- **Year 3 Cost:** $681,000
- **Total cost of first three years:** $2,043,000

Local Governments
- **Capital projects and programs**
- **Advisory Council:** Tier 1
- **Status:** Ongoing need
- **Project:** Support existing regulations that benefit stream and lake enhancement projects
- **Proposed**
- **Year 1 Cost:** $39,000
- **Year 2 Cost:** $39,000
- **Year 3 Cost:** $39,000
- **Total cost of first three years:** $1,17,000
- **Proposed SRFB (per grant share):** $117,000
- **Local share of other funding:** $117,000
- **Sources of other funds:** Funding, materials, and mix of other resources

Dungeness Drainage
- **Advisory Council:** Tier 1
- **Status:** Ongoing need
- **Project:** Explore opportunities to enhance habitat
- **Proposed**
- **Year 1 Cost:** $681,000
- **Year 2 Cost:** $681,000
- **Year 3 Cost:** $681,000
- **Total cost of first three years:** $2,043,000

Lakes
- **Advisory Council:** Tier 1
- **Status:** Ongoing need
- **Project:** Improve Juvenile Rearing Habitat
- **Proposed**
- **Year 1 Cost:** $57,000
- **Year 2 Cost:** $30,000
- **Year 3 Cost:** $22,000
- **Total cost of first three years:** $110,000

Capital projects and programs
- **Advisory Council:** Tier 1
- **Status:** Ongoing need
- **Project:** Improve Juvenile Rearing Habitat
- **Proposed**
- **Year 1 Cost:** $39,000
- **Year 2 Cost:** $39,000
- **Year 3 Cost:** $39,000
- **Total cost of first three years:** $1,17,000

Priority:** Tier 1
Priority:** Tier 1
Priority:** Tier 1
Priority:** Tier 1

Total cost of first three years
South Sound Basin
- **Total Programmatic non-capital need:** $1,221,000
- **Total cost of first three years:** $2,043,000

Other Sources
- **Governments / Local govt, PSAT, and other sources**
- **Total cost of first three years:** $1,521,000
- **Total Programmatic non-capital need:** $1,221,000
- **Total total of first three years:** $2,043,000

Other Sources
- **Governments / Local govt, PSAT, and other sources**
- **Total cost of first three years:** $1,521,000
- **Total Programmatic non-capital need:** $1,221,000
- **Total total of first three years:** $2,043,000

Additional Funds
- **Total cost of first three years:** $1,521,000
- **Total Programmatic non-capital need:** $1,221,000
- **Total total of first three years:** $2,043,000

April 28, 2006

3
Lower Bear Creek Restoration: Provide an enhanced channel alternative to the diverted and levied lower 3,000 feet of Bear Creek, including a new high capacity, low maintenance, and low flow alternative. (N428) King County Project Proposed $1,075,000 $350,000 $125,000 $855,000 Construction $855,000 $855,000 $250,000 $25,000 $50,000

Evaluate locations for UDR addition. Focus on Reach 8, which has the highest restoration potential but does not currently include any projects. (N423) King County Project Proposed $350,000 $250,000 $100,000 $50,000 local government acquisition feasibility study $50,000 $50,000 $150,000 $150,000 $600,000

4.1.4 Ensure projects to support riparian corridor, wetland, and floodplain.

Bear Creek Forest Cover Protection: Acquire forest property, development rights/conservation easements, and provide enhanced incentives to retain and plant forest areas environments. Particularly forested area south of Puget Sound. (N425) King County Project Proposed $300,000 $300,000 $200,000 $100,000 $50,000 local government acquisition $855,000 $855,000 $250,000 $25,000 $50,000

College Creek Forest Cover Protection: Acquire forest property, development rights/conservation easements, and provide enhanced incentives to retain and plant forest areas environments. Particularly forested area south of Puget Sound Trail and at corner of N 160th and Forest Lodge Rd. (N372) King County Project Proposed $300,000 $300,000 $200,000 $100,000 $50,000 local government acquisition $855,000 $855,000 $250,000 $25,000 $50,000

Projects bear Creek initiatives: Acquire 64 acre parcel East of 3rd Ave SE on 50th St NE. (N171) King County Project Proposed $300,000 $300,000 $200,000 $100,000 $50,000 local government acquisition $855,000 $855,000 $250,000 $25,000 $50,000

Forest Cover: Wetland Production: Protect large, undeveloped forested wetland on both Little Bear and Great Bear Creek. Approximately 100 acres including 70 parcels. Also blanket wetland areas. (N249) King County Project Proposed $1,000,000 $350,000 $350,000 $350,000 $200,000 local government acquisition $500,000 $500,000 $500,000 $500,000 $500,000

Protect Riparian Corridors (in Little Bear) Reach 10: Protect undeveloped, forested wetlands (second growth forest) in reach covering approximately 120 acres and 13 parcels located on the west from 97 St NE to 160th St SE, and on the east from the mouth of Great Dane Creek to 160th St SE. (N227) King County Project Proposed $1,000,000 $750,000 $750,000 $750,000 $750,000 local government acquisition $750,000 $750,000 $750,000 $750,000 $750,000

Little Bear Creek Headwater Forest: Protect 88 acres of mature second growth forest on right bank in Little Bear Creek. Largest contiguous forest on west side of Bear Creek. Includes 1 parcels. (N233) King County Project Proposed $2,000,000 $1,500,000 $1,500,000 $1,500,000 $1,500,000 local government acquisition $1,000,000 $1,000,000 $1,000,000 $1,000,000 $1,000,000

Little Bear Creek Forest Cover Protection: Protect located, headwater wetlands. Approximately 100 acres including 70 parcels. Also blanket wetland areas with large wood debris. (N239) King County Project Proposed $1,000,000 $750,000 $750,000 $750,000 $750,000 local government acquisition $750,000 $750,000 $750,000 $750,000 $750,000

Lilac Trail Year - Restore Riparian Functions to Support Juvenile Runoff and Fry Restoration

Restore riparian restoration in reach. Most of the reach is publicly owned, but need to remove invasive plants and related with various vegetation. (N023) Redmond Project Proposed $25,000 $12,500 $12,500 $25,000 $25,000

Continue Bear Creek Wetways program to protect and remove riparian habitat. This reach includes "Reach 12" in particular. Restore riparian cover directly on properties. Also protect undeveloped properties that can be restored like the German Horse Farm. (N285) King County Project Proposed $300,000 $400,000 $100,000 $300,000 $300,000

April 28, 2006
Tier 1: Issaquah

Restoration needed on Sawtooth Haven Farm property on NE 1439-81. Reduce floor sediments, restore riparian areas. Purchase farm plan to address impacts to Issaquah Creek.

Restoration Needed:
- Water and shoreline
- Channel
- Riparian

Operation:
- King County

Sponsor:
- Project: Proposed

Costs:
- Year 1: $25,000
- Year 2: $25,000
- Year 3: $25,000

Year 1 Scope:
- Riparian buffer along Bear Creek through Paradise Valley Conservation Area.

Year 2 Scope:
- Removal of non-native vegetation; placement of gravel substrate in new channel; creation of pools, and an overflow weir. Restoration elements could include excavation of new channel, creation of pools and an overview weir.

Year 3 Scope:
- Removal of non-native vegetation; placement of gravel substrate in new channel; connection to capture hyporheic flows and reconnection of side and wetland areas with native plants.

Total Cost:
- $75,000

Likely End Date:
- 2006

Tier 2: Issaquah

Restoration needed on Sawtooth Haven Farm property on NE 1439-81. Reduce floor sediments, restore riparian areas. Purchase farm plan to address impacts to Issaquah Creek.

Restoration Needed:
- Water and shoreline
- Channel
- Riparian

Operation:
- King County

Sponsor:
- Project: Proposed

Costs:
- Year 1: $270,000
- Year 2: $270,000
- Year 3: $270,000

Year 1 Scope:
- Initial design

Year 2 Scope:
- Design

Year 3 Scope:
- Construction

Total Cost:
- $1,110,000

Likely End Date:
- 2009

Issaquah - Project

Restoration needed on Sawtooth Haven Farm property on NE 1439-81. Reduce floor sediments, restore riparian areas. Purchase farm plan to address impacts to Issaquah Creek.

Restoration Needed:
- Water and shoreline
- Channel
- Riparian

Operation:
- King County

Sponsor:
- Project: Proposed

Costs:
- Year 1: $430,000
- Year 2: $430,000
- Year 3: $430,000

Year 1 Scope:
- Riparian buffer along Bear Creek through Paradise Valley Conservation Area.

Year 2 Scope:
- Riparian buffer along Bear Creek through Paradise Valley Conservation Area.

Year 3 Scope:
- Riparian buffer along Bear Creek through Paradise Valley Conservation Area.

Total Cost:
- $1,300,000

Likely End Date:
- 2010

Issaquah - Project

Restoration needed on Sawtooth Haven Farm property on NE 1439-81. Reduce floor sediments, restore riparian areas. Purchase farm plan to address impacts to Issaquah Creek.

Restoration Needed:
- Water and shoreline
- Channel
- Riparian

Operation:
- King County

Sponsor:
- Project: Proposed

Costs:
- Year 1: $430,000
- Year 2: $430,000
- Year 3: $430,000

Year 1 Scope:
- Riparian buffer along Bear Creek through Paradise Valley Conservation Area.

Year 2 Scope:
- Riparian buffer along Bear Creek through Paradise Valley Conservation Area.

Year 3 Scope:
- Riparian buffer along Bear Creek through Paradise Valley Conservation Area.

Total Cost:
- $1,300,000

Likely End Date:
- 2010

Issaquah - Proposed

Restoration needed on Sawtooth Haven Farm property on NE 1439-81. Reduce floor sediments, restore riparian areas. Purchase farm plan to address impacts to Issaquah Creek.

Restoration Needed:
- Water and shoreline
- Channel
- Riparian

Operation:
- King County

Sponsor:
- Project: Proposed

Costs:
- Year 1: $156,000
- Year 2: $156,000
- Year 3: $156,000

Year 1 Scope:
- Initial design

Year 2 Scope:
- Design

Year 3 Scope:
- Construction

Total Cost:
- $468,000

Likely End Date:
- 2006

Issaquah - Proposed

Restoration needed on Sawtooth Haven Farm property on NE 1439-81. Reduce floor sediments, restore riparian areas. Purchase farm plan to address impacts to Issaquah Creek.

Restoration Needed:
- Water and shoreline
- Channel
- Riparian

Operation:
- King County

Sponsor:
- Project: Proposed

Costs:
- Year 1: $156,000
- Year 2: $156,000
- Year 3: $156,000

Year 1 Scope:
- Initial design

Year 2 Scope:
- Design

Year 3 Scope:
- Construction

Total Cost:
- $468,000

Likely End Date:
- 2006

Issaquah - Proposed

Restoration needed on Sawtooth Haven Farm property on NE 1439-81. Reduce floor sediments, restore riparian areas. Purchase farm plan to address impacts to Issaquah Creek.

Restoration Needed:
- Water and shoreline
- Channel
- Riparian

Operation:
- King County

Sponsor:
- Project: Proposed

Costs:
- Year 1: $156,000
- Year 2: $156,000
- Year 3: $156,000

Year 1 Scope:
- Initial design

Year 2 Scope:
- Design

Year 3 Scope:
- Construction

Total Cost:
- $468,000

Likely End Date:
- 2006

Issaquah - Proposed

Restoration needed on Sawtooth Haven Farm property on NE 1439-81. Reduce floor sediments, restore riparian areas. Purchase farm plan to address impacts to Issaquah Creek.

Restoration Needed:
- Water and shoreline
- Channel
- Riparian

Operation:
- King County

Sponsor:
- Project: Proposed

Costs:
- Year 1: $156,000
- Year 2: $156,000
- Year 3: $156,000

Year 1 Scope:
- Initial design

Year 2 Scope:
- Design

Year 3 Scope:
- Construction

Total Cost:
- $468,000

Likely End Date:
- 2006

Issaquah - Proposed

Restoration needed on Sawtooth Haven Farm property on NE 1439-81. Reduce floor sediments, restore riparian areas. Purchase farm plan to address impacts to Issaquah Creek.

Restoration Needed:
- Water and shoreline
- Channel
- Riparian

Operation:
- King County

Sponsor:
- Project: Proposed

Costs:
- Year 1: $156,000
- Year 2: $156,000
- Year 3: $156,000

Year 1 Scope:
- Initial design

Year 2 Scope:
- Design

Year 3 Scope:
- Construction

Total Cost:
- $468,000

Likely End Date:
- 2006

Issaquah - Proposed

Restoration needed on Sawtooth Haven Farm property on NE 1439-81. Reduce floor sediments, restore riparian areas. Purchase farm plan to address impacts to Issaquah Creek.

Restoration Needed:
- Water and shoreline
- Channel
- Riparian

Operation:
- King County

Sponsor:
- Project: Proposed

Costs:
- Year 1: $156,000
- Year 2: $156,000
- Year 3: $156,000

Year 1 Scope:
- Initial design

Year 2 Scope:
- Design

Year 3 Scope:
- Construction

Total Cost:
- $468,000

Likely End Date:
- 2006

Issaquah - Proposed

Restoration needed on Sawtooth Haven Farm property on NE 1439-81. Reduce floor sediments, restore riparian areas. Purchase farm plan to address impacts to Issaquah Creek.

Restoration Needed:
- Water and shoreline
- Channel
- Riparian

Operation:
- King County

Sponsor:
- Project: Proposed

Costs:
- Year 1: $156,000
- Year 2: $156,000
- Year 3: $156,000

Year 1 Scope:
- Initial design

Year 2 Scope:
- Design

Year 3 Scope:
- Construction

Total Cost:
- $468,000

Likely End Date:
- 2006
<table>
<thead>
<tr>
<th>Tier</th>
<th>Priority</th>
<th>Action</th>
<th>Likely Sponsors</th>
<th>Project or Program Addressed</th>
<th>Total cost of first three years</th>
<th>Proposed SRFB (or grant) share</th>
<th>Source of other funds</th>
<th>Year 1 Scope</th>
<th>Year 1 Cost</th>
<th>Year 2 Scope</th>
<th>Year 2 Cost</th>
<th>Year 3 Scope</th>
<th>Year 3 Cost</th>
<th>Likely end date</th>
<th>Additional Funds needed after 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>Priority projects and programs benefitting non-listed species</td>
<td></td>
</tr>
<tr>
<td>Tier 1</td>
<td>Shoreline Complexity</td>
<td>Drygulch Zaccaro Creek and entrance mouth on East shore of Lake Sammamish to benefit kokanee, juvenile Chinook, and other fish species</td>
<td>City of Sammamish</td>
<td>Project</td>
<td>Proposed</td>
<td>$250,000</td>
<td>$120,000</td>
<td></td>
<td>Construction</td>
<td>2009</td>
<td>$250,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tier 1</td>
<td>Shoreline Complexity</td>
<td>Drygulch Creek: Enhance mouth and project lower reaches of Drygulch Creek on East shore of Lake Sammamish. If property on lower reaches of creek in other jurisdictions can be acquired, provide outreach opportunities on the site.</td>
<td>City of Sammamish</td>
<td>Project</td>
<td>Proposed</td>
<td>$300,000</td>
<td>$150,000</td>
<td></td>
<td>Acquisition</td>
<td>$300,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

April 28, 2006
TOTALS

Capital

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cedar Total</td>
<td>24,917,000</td>
<td>12,780,000</td>
<td>11,937,000</td>
<td>23,457,000</td>
<td>12,150,000</td>
<td>11,307,000</td>
<td>2,900,000</td>
<td>1,700,000</td>
<td>1,200,000</td>
<td>1,200,000</td>
<td>1,200,000</td>
<td>7,200,000</td>
</tr>
<tr>
<td>Lake Washington Total</td>
<td>3,950,000</td>
<td>1,940,000</td>
<td>2,010,000</td>
<td>3,950,000</td>
<td>1,940,000</td>
<td>1,990,000</td>
<td>1,050,000</td>
<td>1,050,000</td>
<td>1,050,000</td>
<td>1,050,000</td>
<td>1,050,000</td>
<td>2,750,000</td>
</tr>
<tr>
<td>Ship Canal / Lake Union / Locks Total</td>
<td>150,000</td>
<td>-</td>
<td>150,000</td>
<td>150,000</td>
<td>-</td>
<td>150,000</td>
<td>150,000</td>
<td>-</td>
<td>150,000</td>
<td>-</td>
<td>150,000</td>
<td>2,750,000</td>
</tr>
<tr>
<td>Estuary / Nearshore Total</td>
<td>3,950,000</td>
<td>1,931,000</td>
<td>2,010,000</td>
<td>3,950,000</td>
<td>1,931,000</td>
<td>1,990,000</td>
<td>1,050,000</td>
<td>1,050,000</td>
<td>1,050,000</td>
<td>1,050,000</td>
<td>1,050,000</td>
<td>2,750,000</td>
</tr>
<tr>
<td>North Lk Washington Tribs Total</td>
<td>14,915,000</td>
<td>8,150,000</td>
<td>6,760,000</td>
<td>14,915,000</td>
<td>8,150,000</td>
<td>6,760,000</td>
<td>5,700,000</td>
<td>4,425,000</td>
<td>5,880,000</td>
<td>7,155,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Issaquah Creek Total</td>
<td>3,950,000</td>
<td>1,931,000</td>
<td>2,010,000</td>
<td>3,950,000</td>
<td>1,931,000</td>
<td>1,990,000</td>
<td>1,050,000</td>
<td>1,050,000</td>
<td>1,050,000</td>
<td>1,050,000</td>
<td>1,050,000</td>
<td>2,750,000</td>
</tr>
<tr>
<td>Non-Listed Species Total</td>
<td>550,000</td>
<td>1,031,000</td>
<td>2,325,000</td>
<td>550,000</td>
<td>1,031,000</td>
<td>2,325,000</td>
<td>2,350,000</td>
<td>2,220,000</td>
<td>8,150,000</td>
<td>5,700,000</td>
<td>5,880,000</td>
<td>7,155,000</td>
</tr>
<tr>
<td>In the recent past, WRIA 8 received $60,000/year for lead entity coordination. The $75,000 figure is an estimate received from Evergreen Funding.</td>
<td></td>
</tr>
</tbody>
</table>

Non-Capital

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive Management and other</td>
<td>2,025,000</td>
<td>2,025,000</td>
<td>800,000</td>
<td>2,025,000</td>
<td>2,025,000</td>
<td>800,000</td>
<td>2,025,000</td>
<td>2,025,000</td>
<td>800,000</td>
<td>2,025,000</td>
<td>2,025,000</td>
<td>800,000</td>
</tr>
<tr>
<td>Cedar Total</td>
<td>1,266,000</td>
<td>1,266,000</td>
<td>589,000</td>
<td>1,266,000</td>
<td>1,266,000</td>
<td>589,000</td>
<td>1,266,000</td>
<td>1,266,000</td>
<td>589,000</td>
<td>1,266,000</td>
<td>1,266,000</td>
<td>589,000</td>
</tr>
<tr>
<td>Regulatory Total</td>
<td>1,521,000</td>
<td>1,521,000</td>
<td>874,000</td>
<td>1,521,000</td>
<td>1,521,000</td>
<td>874,000</td>
<td>1,521,000</td>
<td>1,521,000</td>
<td>874,000</td>
<td>1,521,000</td>
<td>1,521,000</td>
<td>874,000</td>
</tr>
<tr>
<td>NLW Total</td>
<td>1,506,000</td>
<td>1,506,000</td>
<td>865,000</td>
<td>1,506,000</td>
<td>1,506,000</td>
<td>865,000</td>
<td>1,506,000</td>
<td>1,506,000</td>
<td>865,000</td>
<td>1,506,000</td>
<td>1,506,000</td>
<td>865,000</td>
</tr>
<tr>
<td>Issaquah Total</td>
<td>1,290,000</td>
<td>1,290,000</td>
<td>668,000</td>
<td>1,290,000</td>
<td>1,290,000</td>
<td>668,000</td>
<td>1,290,000</td>
<td>1,290,000</td>
<td>668,000</td>
<td>1,290,000</td>
<td>1,290,000</td>
<td>668,000</td>
</tr>
<tr>
<td>Total non-capital need</td>
<td>55,208,000</td>
<td>55,208,000</td>
<td>33,271,000</td>
<td>55,208,000</td>
<td>55,208,000</td>
<td>33,271,000</td>
<td>55,208,000</td>
<td>55,208,000</td>
<td>33,271,000</td>
<td>55,208,000</td>
<td>55,208,000</td>
<td>33,271,000</td>
</tr>
</tbody>
</table>

GRAND TOTAL

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>88,756,000</td>
<td>52,726,000</td>
<td>30,048,000</td>
<td>18,902,000</td>
</tr>
</tbody>
</table>
Three-Year Implementation Plan Narrative for WRIA 8
Attachments

Attachment A: Limiting Factor Key. The following are the primary limiting factors to Chinook survival. This key is to be used with the 3-Year Implementation List and Attachment B: WRIA 8 Programmatic Actions List.

Hydrology
Urbanization within WRIA 8 has drastically altered upland, stream, and lake hydrology in most areas. Urbanization in upland areas (e.g., vegetation clearing, soil compaction, road and building construction) increases the amount of impervious surface within watersheds which, in turn, influences the infiltration of precipitation and increases the amount and rate at which surface water runoff reaches aquatic areas (Dunne and Leopold 1978; Poff et al. 1997). In river and creek habitats, the increase in flow can cause significant modifications to instream habitat and channels often respond to these flow regime changes through an overall enlargement, specifically channel incision and widening (Dunne and Leopold 1978). The increase in flow can have far reaching implications by displacing natural structure (e.g., coarse sediment and wood), increasing rates of erosion and decreasing overall bank stability. The effects of higher stream flows are further exacerbated by poor riparian conditions and disconnection of the stream channel from the floodplain, through bank armoring, channel incision and encroachment.

Alternatively, stream hydrology can be altered by regulation of instream flows and water withdrawals (either surface water or groundwater), that typically reduce water levels. This can reduce the flows available to form habitat and connect with off-channel areas. Flow withdrawals, particularly in drier months, can reduce base flow levels and reduce available habitat areas for fish.

Historic changes from lowering the level of lakes Washington and Sammamish, as well as regulating lake levels to vary only by 2 feet, reduces shoreline habitat complexity by limiting seasonal wetland formation and other habitat-forming interactions at the water-land interface. The amount of water available in Lake Washington also affects operations of the Locks and dictates how water is used at the smolt flumes and for boat lockages, affecting the outmigration route, and hence survival, of juveniles.

Protection of hydrologic processes, including ground and surface water interactions, is hypothesized to directly support the survival of the egg incubation, fry colonization and prespawning migrant Chinook life stages. Other life stages are impacted by the role of hydrologic processes in maintaining cool stream temperatures, delivering spawning gravel, large woody debris, and nutrients, and providing access to off-channel habitat areas.
Water and Sediment Quality

Human-induced changes to water quality (e.g., industrial effluent, sewer overflows, urban runoff) can alter water temperatures, turbidity, oxygen content and nutrient and contaminant concentrations (Karr 1995; Paul and Meyer 2001). Water and sediment quality are degraded in the Ship Canal, Lake Union, and the Sammamish River, primarily in relation to water temperatures, although sediment quality is of concern in the Ship Canal and Lake Union as well. In general, these changes can affect the kinds, amounts, and activity of all aquatic organisms in streams (Welch et al. 1998). For salmonids in particular, poor water quality can harm them directly or indirectly through oxygen depletions, lethal temperature levels, acute and chronic toxicity, or prey reductions (Karr 1995; Bjornn and Reiser 1991).

Protection and restoration of water and sediment quality are hypothesized to primarily support the egg incubation life stage. Degradation of water quality (particularly increases in fine sediment and/or toxic chemicals) can significantly impact this life stage and drastically reduce productivity. Water quality improvements (particularly sediments) are also hypothesized to benefit the fry colonization and juvenile rearing life stages. In the Sammamish River, it is hypothesized that reduced temperatures would increase the survival of adult pre-spawning migrants.

There is currently considerable uncertainty regarding the causes of pre-spawning mortality that has been observed in coho and Chinook. As the incidence of pre-spawning mortality appears to be correlated with urban conditions, it is possible that runoff from urbanization is a causal factor. The potential role of water quality in pre-spawning mortality increases the need for actions that reduce water quality degradation.

Floodplain Connectivity

Streams and rivers are dynamic systems that constantly interact with their surrounding floodplain (Naiman and DeCamps 1990; May 1996; Morley 2000). Bank armoring, dredging, channel incision and urban encroachment effectively channelize the stream and severely limit interactions between the stream channel and the adjacent floodplain. This reduces the recruitment of coarse sediments and wood from floodplain areas, and limits materials available for habitat forming processes. Additionally, urban systems have lost riparian areas as a result of bank armoring, development of drainage infrastructure, and increased buildable area in the watershed (May 1996). Without the floodplain, streams and rivers lose habitat complexity, most notably off-channel and margin refuge habitats that provide resting areas for migrating fish and slow velocity areas during high-energy discharge events. The interactions of water bodies with their adjacent land is similarly important for the lakes and marine nearshore of...
WRIA 8, which allows sediment and wood recruitment (discussed further under channel/shoreline complexity below).

Channel confinement has reduced floodplain connectivity and reduced the amount of pools, small cobbles, and large woody debris. It is hypothesized that this reduced connectivity reduces the survival of the fry colonization and juvenile rearing life stages. It is also hypothesized that this confinement reduces the success of the pre-spawning holding life stage.

Riparian Vegetation
Land development and encroachment into areas adjacent to streams has reduced the extent, composition, and integrity of riparian vegetation along all water bodies of WRIA 8. Mature, native plant communities, dominated by deciduous and coniferous trees, have been replaced by pavement, commercial/industrial activities, landscaped residential yards and invasive-dominated shrub communities (e.g., Japanese knotweed and Himalayan blackberries). In addition, riparian zones have been isolated from aquatic environments by bank armoring. As a result, riparian function has been altered. The riparian zone along stream banks, as well as lake and marine shorelines, has little woody debris to contribute to the habitat of the adjacent aquatic area. Other riparian inputs, such as leaf litter and terrestrial insects, are reduced as well (Gregory et al. 1991; Morley et al. 2003; Sobocinski 2003). In creeks and rivers, degraded riparian vegetation combined with increased high flow events reduces bank stability and increases bank erosion (May 1996). These riparian alterations, combined with other factors, have reduced aquatic habitat complexity and the availability of prey resources for salmonids.

The protection and restoration of riparian function (including vegetation as well as overbank flows) is hypothesized to support the fry colonization and instream rearing life history stages. Other life stages (such as pre-spawning holding) are hypothesized to benefit from the connectivity of riparian areas with the mainstem channel, and sufficient flows to recruit wood and nutrients into the system.

Sediment Processes
Sediment recruitment, storage, and transport can be severely altered by altered hydrology, bank armoring, and reduced floodplain interactions. Depending on the flow dynamics, land uses, and underlying geology of the area, aquatic areas can suffer from either a lack of coarse sediments (e.g., gravel) or an abundance of fine sediments. Decreased gravel classes have been observed in urban streams as a result of altered sediment supplies and velocities (Finkenbine et al. 2000). Disconnecting stream, lake or marine nearshore areas from their adjacent floodplain/land interface has reduced sediment recruitment. Currents or flow velocities are responsible for distributing these substrates in the aquatic environment and without additional input, the system is left sediment deficient. In streams, increased stream gradients and flow velocities have further reduced retention of in-stream sediments (Pizzuto et al. 2000). These conditions reduce
the ability of aquatic habitats to create and maintain habitats. In freshwater areas, this reduces the amount of spawning substrates that are available for salmonids and the habitat complexity of the stream or lake area to benefit rearing juveniles. In salt water areas, there is a loss of shallow gravel substrate areas for juvenile refuge and feeding.

While coarse sediment recruitment is a problem with floodplain isolation, increased fine sediment is often a problem as well, especially in urbanized streams (Wydzga 1997). Fine sediment can be supplied through either upland construction or erosion of the shoreline. Channel bank erosion, in particular, is a major source of fine sediment, which is exacerbated by increasing high flows (Paul and Meyer 2001). While habitat problems associated with find sediments are mostly limited to creeks and rivers, the introduction of fine sediment has implications for the food web. Most benthic invertebrates cannot forage effectively in areas dominated by fine sediments (Collier 1995). Sedimentation can also cause egg mortality by filling intragravel spaces in redds, which reduces water flow or traps developed fry in the substrate. Suspended sediments also affect salmonid behavior (Newcombe and Jensen 1996).

Actions that protect and restore spawning gravels are hypothesized to benefit the spawning life stage, while actions that reduce fine sediments are hypothesized to benefit the egg incubation, fry colonization, and juvenile rearing life stages.

Shoreline Complexity
The combination of altered hydrology, loss of floodplain connection, degraded riparian communities, and altered sediment processes severely limits habitat forming processes and therefore, habitat complexity. This occurs in both lotic (streams and rivers) and lentic systems (lakes and the marine nearshore). In lakes and the marine nearshore, there is an absence of high-quality, shallow water habitat with small substrates, in-water wood, overhanging vegetation, and variable edges at the land-water interface. Juveniles have poor rearing habitat that does not provide areas for foraging and refuge from predators, and the addition of over-water docks and piers may result in increased exposure to predators as migrating juveniles move to deeper water to go around these structures. In addition, adult salmonids do not have areas to hold or rest while migrating.

Passage
Road crossings and other development activities have placed many creek channels in pipes and culverts (Finkenbine et al. 2000). Weirs and dams have also been installed in stream channels to reduce channel gradient and decrease stream velocity (May 1996). These structures were typically not designed to pass sediment or wood, and as a result, these materials are trapped in upstream areas, limiting their ability to contribute to downstream habitat formation. In addition, instream structures are often impassable to fish by creating outfall or velocity barriers (WDFW 1999), thereby restricting the amount of instream habitat
available to fish. Fish ladders and downstream flumes, such as at the Locks and Landsburg Dam (Cedar River), are passable to adults and juveniles but may have detrimental impacts through delayed migration or other sub-lethal effects (although none have been documented).

Fish passage blockages are hypothesized to reduce the spatial distribution and diversity of Chinook populations, and to reduce the productivity of juvenile rearing life stages. In WRIA 8, culvert blockages are generally on smaller tributaries and have a larger impact on other salmonids such as coho. With the addition of fish passage facilities at Landsburg Diversion Dam, it is hypothesized that the most significant passage issues in WRIA 8 are at the Ballard Locks. Direct adult mortality has been observed in 2004 and 2005. It is further hypothesized that juvenile survival would increase through improved effectiveness of the smolt slides and infrastructure improvements to increase the use of the smolt slides by migrating juveniles and increase the area of freshwater – saltwater mixing in the Ship Canal and Salmon Bay. Finally, passage improvements in a number of direct Puget Sound drainages that flow under the Burlington Northern Sante Fe Railroad would are hypothesized to increase the productivity of juvenile rearing in the nearshore of WRIA 8.
Attachment B: WRIA 8 Programmatic Actions List. This list is from the start-list of the WRIA 8 Chinook Conservation Plan, Volume I, Chapter 9. The start-list recommends the top actions for the next 10 years for Chinook recovery. This list is organized in the same geographic order as the 3-Year Implementation Plan. These programmatic cost estimates are above and beyond current dollars expended for these actions.

<table>
<thead>
<tr>
<th>Primary Limiting Factors Addressed</th>
<th>Start-list Programmatic Recommendations</th>
<th>High Cost Estimate</th>
<th>WRIA 8 Plan List Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cedar</td>
<td>Enlist help of builders practicing sustainable development to promote benefits of forest cover in protecting water quality. (C706, C707, C720, C722) 1 Basinwide</td>
<td>$5,000</td>
<td>C706, C707, C720, C722</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Employ basinwide stewards to work with property owners, land trusts, and agencies in order to identify and secure forested, wetland, and riparian areas, and to encourage the best management practices for those held in private ownership. Encourage neighborhood and community protection associations to foster the ethic of voluntary stewardship and build bridges between property owners, agencies, and local governments. (C703, C716, C720, C721) 2 Basinwide</td>
<td>$15,000</td>
<td>C703, C716, C720, C721</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Consistent with Growth Management Act, Renton and potential annexation areas should absorb most growth so that rural habitat resources can be protected; growth should be managed to minimize impacts on forest cover, water quality, and flows. (C1) 3 Within Urban Growth Area</td>
<td>$0</td>
<td>C1</td>
</tr>
<tr>
<td>Hydrology</td>
<td>In urban areas, protect remaining trees and encourage reforestation through street tree and urban forestry programs, tree protection regulations, landscaping incentives, and redevelopment. (C3) 4 Within Urban Growth Area</td>
<td>$10,000</td>
<td>C3</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Protection of forest cover in Tier 1 and Tier 2 subareas is a high priority land use action, so that existing levels of forest cover are not further degraded. King County should strictly enforce the clearing restrictions for rural areas adopted in 10/04 as part of the critical areas ordinance update, pursue acquisition and incentives, and provide forest stewardship plans. Forest cover protections should account for site geology, soils, topography, and vegetation to maximize retention and infiltration. (C2) 5 Outside Urban Growth Area</td>
<td>$50,000</td>
<td>C2</td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>Offer regulatory flexibility and incentives to encourage property owners to restore riparian function and remove impervious areas during redevelopment of public or private properties. (C6, C7) 6 Basinwide</td>
<td>$20,000</td>
<td>C6, C7</td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>Expand outreach to streamside property owners about shoreline landscape design, maintenance, and streambank armoring alternatives. Convey through direct mailing of brochures (e.g., Streamside Savvy, Going Native); videos (Natural Lawn Care); shoreline homeowners kits given when home purchased; or,</td>
<td>$15,000</td>
<td>C701, C702, C709, C714, C716, C722</td>
</tr>
<tr>
<td>Primary Limiting Factors Addressed</td>
<td>Start-list Programmatic Recommendations</td>
<td>High Cost Estimate</td>
<td>WRIA 8 Plan List Code</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>through workshops, including expansion of Natural Yard Care Program to include guidelines specific to shoreline residents. (C701, C702, C709, C714, C716, C722) 7 Basinwide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>Offer educational opportunities to landscape designers/contractors on riparian design/installation, alternatives to invasive species, and use of compost. (C705, C706, C707) 8 Basinwide</td>
<td>$5,000</td>
<td>C705, C706, C707</td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>Encourage neighborhood garden tours of salmon-friendly gardens to help residents visualize alternatives to traditional, less eco-friendly landscape treatments. Offer neighborhood organizers assistance with publicity, signage, and volunteer docents. (C722, C707) 9 Basinwide</td>
<td>$10,000</td>
<td>C722, C707</td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>Protection of remaining riparian vegetation within Urban Growth Area is high priority; encourage replanting of riparian vegetation through incentives, and strictly enforce aquatic buffers and limit variances where vegetation still exists in sensitive areas. (C5) 10 Within Urban Growth Area</td>
<td>$30,000</td>
<td>C5</td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>Protect intact riparian buffers in Tier 1 and Tier 2 subareas through strict enforcement of buffer regulations, and offer incentives to restore degraded habitat buffers, recognizing that majority of riparian corridor is privately owned. Support King County forestry and agriculture programs including technical and financial assistance to landowners. Protection and restoration of riparian buffer on publicly owned lands is also a priority. (C5, C7) 13 Outside Urban Growth Area</td>
<td>$30,000</td>
<td>C5, C7</td>
</tr>
<tr>
<td>Floodplain Connectivity</td>
<td>Limit new development in floodplains and channel migration zones; develop and apply standards which minimize impacts to salmon. State and local transportation plans should minimize new road crossings. (C17, C18) 15 Basinwide</td>
<td>$0</td>
<td>C17, C18</td>
</tr>
<tr>
<td>Floodplain Connectivity</td>
<td>Do a demonstration project in publicly accessible area with riverfront property owner(s) willing to replace bulkheads, levees, or stream bank armoring with more ecologically friendly design. Project should contain elements doable by average property owner and illustrate costs and benefits. (C715) 16 Basinwide</td>
<td>$15,000</td>
<td>C715</td>
</tr>
<tr>
<td>Floodplain Connectivity</td>
<td>Conduct study to identify locations where large woody debris should be added to Cedar mainstem and to explore feasibility of passing large woody debris over the Landsburg dam. (C601, C260) 17 Basinwide</td>
<td>$30,000</td>
<td>C601, C260</td>
</tr>
<tr>
<td>Floodplain Connectivity</td>
<td>Increase public awareness about the value of large woody debris and native vegetation for flood protection, salmon habitat, and healthy streams. Convey through media (e.g., local papers, community newsletters); signage along publicly accessible “model” shoreline; brochures such as King County’s Large Woody Debris and River Safety; and other outreach venues such as festivals, local cable</td>
<td>$10,000</td>
<td>C716</td>
</tr>
<tr>
<td>Primary Limiting Factors Addressed</td>
<td>Start-list Programmatic Recommendations</td>
<td>High Cost Estimate</td>
<td>WRIA 8 Plan List Code</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Jurisdictions should adopt and enforce stormwater regulations and best management practices, consistent with Washington Department of Ecology’s 2001 Stormwater Management Manual (or beyond), as part of the NPDES Phase 1 and Phase 2 permit requirements. These regulations and BMPs should reduce sediment inputs from bed-scouring high flows and from non-point sources, including roads, development, agriculture, and other activities. Water quality problems should be addressed through stormwater programs (including low impact development BMPs), current and future TMDLs, livestock programs, and upgrade of stormwater facilities (where possible). (C12) 32 Basinwide</td>
<td>$30,000</td>
<td>C12</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Explore options to improve stormwater management in developed areas, e.g., through development of regional stormwater facilities and natural drainage systems (e.g., SEA Streets). Promote stormwater best management practices related to parking lot cleaning, storm drain maintenance and road cleaning. (C13) 33 Basinwide</td>
<td>$30,000</td>
<td>C13</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>State/local transportation departments should address runoff from all roads and retrofit existing roads as part of major maintenance, expansion or upgrade projects; road maintenance actions should be consistent with Tri-County guidelines. Stormwater impacts from major transportation projects (for new and expanded roadways proposed during the next ten years) should be addressed. Washington Department of Transportation should improve stormwater management on SR 169. (C14, C15, C16) 34 Basinwide</td>
<td>$20,000</td>
<td>C14, C15, C16</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Coordinate with local business community and non-profits to encourage the use of commercial car washes and carwash kits. Reprint and distribute water quality poster series depicting impacts of everyday practices: washing car, driving car without maintenance, leaving pet wastes unattended, and improperly using lawn chemicals. (C710) 35 Basinwide</td>
<td>$5,000</td>
<td>C710</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Publicize emergency call numbers for public to report water quality and quantity problems, non-permitted vegetation clearing, and non-permitted in-stream grading and wood removal incidents. (C713) 36 Basinwide</td>
<td>$5,000</td>
<td>C713</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Work with Washington Department of Ecology and local health departments on regulations, incentives, and education related to impact of surface and groundwater withdrawals, including illegal withdrawals and exempt wells. Determine where illegal surface water withdrawals are occurring and follow-up with enforcement to ensure withdrawals do not continue. (C22) 37 Basinwide</td>
<td>$80,000</td>
<td>C22</td>
</tr>
<tr>
<td>Primary Limiting Factors Addressed</td>
<td>Start-list Programmatic Recommendations</td>
<td>High Cost Estimate</td>
<td>WRIA 8 Plan List Code</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Work with City of Seattle, Cedar River Instream Flow Commission, and other stakeholders on policies, procedures and research related to effects of flow on habitat restoration. (C23) 38 Basinwide</td>
<td>$30,000</td>
<td>C23</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Address flow issues through other regulations/programs including: critical aquifer recharge area protections, land use regulations, groundwater management plans, stormwater regulations, and best management practices for infiltration, low impact development, etc. (C19, C21, C20) 39 Basinwide</td>
<td>$20,000</td>
<td>C19, C21, C20</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Promote availability of water conservation education and incentive programs (e.g., rebates for efficient toilets, free landscape irrigation audits) to decrease household, commercial, and landscaping irrigation water consumption throughout WRIA 8. (C24, C708) 40 Basinwide</td>
<td>$0</td>
<td>C24, C708</td>
</tr>
<tr>
<td>Cedar Tier II</td>
<td>Study where and how to add large woody debris to upper Cedar River mainstem and implement program. Must address dam safety in large woody debris placement. (C607) 41 Upper Cedar River Tier 2</td>
<td>$941,006</td>
<td>C607</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Provide enhanced flows for pre-spawning migrants - Work with the City of Kent to establish instream flows that are protective of Chinook through their Habitat Conservation Plan process. Investigate and address other impacts to flows through stormwater management (e.g., low impact development), education and enforcement (e.g., for illegal and exempt withdrawals), etc. (C73, C75, C76, C80, C351) 42 Rock Creek Tier 2</td>
<td>$20,000</td>
<td>C73, C75, C76, C80, C351</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Adopt and enforce stormwater regulations and best management practices to reduce stormwater flows that have increased bed scour and deposition of fine sediments. Flashy flows should be addressed through forest cover retention, low impact development techniques, erosion control during construction, improved stormwater management on new and existing roads. (C64) 44 Taylor Creek Tier 2</td>
<td>$10,000</td>
<td>C64</td>
</tr>
<tr>
<td>Migratory</td>
<td>Address water quality and high flow impacts from creeks and shoreline development through NPDES Phase 1 and Phase 2 permit updates, consistent with Washington Department of Ecology’s 2001 Stormwater Management Manual, including low impact development techniques, on-site stormwater detention for new and redeveloped projects, and control of point sources that discharge directly into the lakes. Stormwater impacts from major transportation projects (for new and expanded roadways proposed during the next ten years) should be addressed. Encourage low impact development through regulations, incentives, education/training, and demonstration projects</td>
<td>$10,000</td>
<td>C39, N63, I72, I74</td>
</tr>
<tr>
<td>Primary Limiting Factors Addressed</td>
<td>Start-list Programmatic Recommendations</td>
<td>High Cost Estimate</td>
<td>WRJA 8 Plan List Code</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Protect and restore water quality and other ecological functions in tributaries to reduce effects of urbanization and reduce conditions which encourage cutthroat. Protect and restore forest cover, riparian buffers, wetlands, and creek mouths by revising and enforcing critical areas ordinances and Shoreline Master Programs, incentives, and flexible development tools. (C38, N64, I75, C747, C748) 9 Basinwide Lake Washington and Lake Sammamish</td>
<td>$50,000</td>
<td>C38, N64, I75, C747, C748</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Promote through design competitions and media coverage the use of "rain gardens" and other low impact development practices that mimic natural hydrology. Combine a home/garden tour or "Street of Dreams" type event featuring these landscape/engineering treatments. (C748) 11 Basinwide Lake Washington and Lake Sammamish</td>
<td>$15,000</td>
<td>C719, C721, N716</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Encourage salmon friendly shoreline design during new construction or redevelopment by offering incentives and regulatory flexibility to improve bulkhead and dock design and revegetate shorelines. Increase enforcement and address nonconforming structures over long run by requiring that major redevelopment projects meet current standards. (C27-29, N50, N52-53, I54-56) 1 Basinwide Lake Washington and Lake Sammamish</td>
<td></td>
<td>C27, C28, C29, N50, N52, N53, I54, I55, I56</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Discourage construction of new bulkheads; offer incentives (e.g., provide expertise, expedite permitting) for voluntary removal of bulkheads, beach improvement, riparian revegetation. (C30, N51, I52) 2 Basinwide Lake Washington and Lake Sammamish</td>
<td>$20,000</td>
<td>C30, N51, I52</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Support joint effort by NOAA Fisheries and other agencies to develop dock/pier specifications to streamline federal/state/local permitting; encourage similar effort for bulkhead specifications. (C32-33, N55-56, I57, I66) 3 Basinwide Lake Washington and Lake Sammamish</td>
<td>$20,000</td>
<td>C32, C33, N55, N56, I57, I66</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Promote value of light-permeable docks, smaller piling sizes, and community docks to both salmon and landowners through direct mailings to lakeshore landowners or registered boat owners sent with property tax notice or boat registration tab renewal. Offer financial incentives for community docks in terms of reduced permit fees, loan fees/percentage rates, taxes, and permitting time, in addition to construction cost savings. (C734, C735) 4 Basinwide Lake Washington and Lake Sammamish</td>
<td>$25,000</td>
<td>C734, C735</td>
</tr>
<tr>
<td>Primary Limiting Factors Addressed</td>
<td>Start-list Programmatic Recommendations</td>
<td>High Cost Estimate</td>
<td>WRIA 8 Plan List Code</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>-----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Develop workshop series specifically for lakeshore property owners on lakeside living: natural yard care, alternatives to vertical wall bulkheads, fish friendly dock design, best management practices for aquatic weed control, porous paving, and environmentally friendly methods of maintaining boats, docks, and decks. Related efforts include creation of a website to convey workshop material, an awareness campaign, “Build a Beach,” to illustrate impact of bulkheads on development of sandy beaches. (C729, C730, C736) 5 Basinwide Lake Washington and Lake Sammamish</td>
<td>$50,000</td>
<td>C729, C730, C736</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Coordinate with local businesses to sponsor a shoreline revegetation campaign, incorporating environmental stewardship as part of redevelopment occurring within Ship Canal area. Extend message (and sponsorship) through signage along shore, in-store promotions (at business’s discretion), and media recognition. (M707) 15 Basinwide Lake Union, Ship Canal, and Locks</td>
<td>$20,000</td>
<td>M707</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Bluffs on Magnolia and Discovery Park in Seattle are only ones in WRIA 8 that are not armored by the railroad and have some unarmored locations (publicly and privately owned). Prohibit bulkheads or any other form of armoring and development at these locations through Seattle’s critical areas ordinance and Shoreline Master Program. (M1) 16 Basinwide Estuary and Nearshore</td>
<td>$0</td>
<td>M1</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Support King County-funded sediment source study to: 1) establish where feeder bluffs were prior to the railroad, and 2) qualitatively assess rates of erosion and sediment contribution of those bluffs. Expect study completion by 3/05. 17 Based on study results:</td>
<td>$0</td>
<td>M2, M3</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Map those bluffs that are most critical to protect (to preserve future opportunities to restore them to natural function), and protect them from future development through critical areas ordinance and/or Shoreline Master Program updates or acquisition. Note that steep slopes that are already developed need to be protected from erosion as a health and safety issue. 18 Basinwide Estuary and Nearshore</td>
<td>$0</td>
<td>M2, M3</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Do pilot projects to open up certain slide prone areas (e.g., by building trestles under railroad), so that slides make it into the nearshore and/or investigate appropriateness of a beach nourishment program. The experimental nature of a beach nourishment program requires a comprehensive and robust adaptive management and monitoring system. (M2, M3) 18b Basinwide Estuary and Nearshore</td>
<td>$10,000</td>
<td>M2, M3</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Create an education campaign for property owners along bluff as well as general public: Have you fed your beach today? Define feeder bluffs, challenge the notion that all erosion is a bad thing. (M724) 19 Basinwide Estuary and Nearshore</td>
<td>$30,000</td>
<td>M724</td>
</tr>
<tr>
<td>Primary Limiting Factors Addressed</td>
<td>Start-list Programmatic Recommendations</td>
<td>High Cost Estimate</td>
<td>WRIA 8 Plan List Code</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--</td>
<td>-----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Protect remaining nearshore vegetation (on low or high bluffs) through regulation and/or acquisition. Regulatory tools to protect vegetation and prevent further development on and near top of bluffs, include: steep slope ordinances, bald eagle protection ordinances, critical areas ordinances, and clearing ordinances. (M7) 20 Basinwide Estuary and Nearshore</td>
<td>$10,000</td>
<td>M7</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Offer incentives to encourage bulkhead removal and revegetation along shoreline, including: allow regulatory flexibility during redevelopment, provide expertise (e.g., templates for shoreline planting plan, bulkhead design); expedite permitting at local, state and federal levels. (M8) 21 Basinwide Estuary and Nearshore</td>
<td>$20,000</td>
<td>M8</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>For areas with existing residential, commercial, and industrial development west of the railroad (e.g. Nakeeta Beach, Point Wells, Richmond Beach): - Prohibit new development, at least in areas designated as conservancy. - During redevelopment, reduce overall impacts to nearshore, e.g., limit additional riprap to that required to protect structures, require riparian revegetation, avoid construction in intertidal zone, use smallest feasible footprint for structures, redevelop industrial sites into less intensive uses. - Promote pilot projects to better understand impacts of bank hardening in estuary and nearshore. As site specific projects are pursued “to remove structures, fill, and bulkheads” through fee simple purchase of parcels, address any regulatory or programmatic actions in order to expedite these projects. (M4) 22 Basinwide Estuary and Nearshore</td>
<td>$20,000</td>
<td>M4</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Offer shoreline property owners a series of shoreline design workshops on: shoreline planting design/ noxious weed management; slope stabilization and erosion control using vegetation; natural yard care; porous paving options; alternatives to vertical wall bulkheads; salmon friendly dock design; and environmentally friendly methods of maintaining boats, docks, and decks. Offer professional workshops to marine contractors and design professionals on more environmentally friendly shoreline design. (M714, M716, M718, M719) 24 Basinwide Estuary and Nearshore</td>
<td>$50,000</td>
<td>M714, M716, M718, M719</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Prohibit new residential overwater structures. For new public facilities (e.g., ferry docks), incorporate salmon-friendly design features and mitigate for unavoidable impacts. Retrofit existing overwater structures with salmon friendly design features. Where applicant meets guidelines for marine overwater structures, offer expedited local/state/federal permitting (similar to concept being promoted for Lake Washington overwater structures by NOAA Fisheries and other agencies). (M10, M11, M13) 25 Basinwide Estuary and Nearshore</td>
<td>$15,000</td>
<td>M10, M1, M13</td>
</tr>
<tr>
<td>Primary Limiting Factors Addressed</td>
<td>Start-list Programmatic Recommendations</td>
<td>High Cost Estimate</td>
<td>WRIA 8 Plan List Code</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Remove overwater structures and pilings when possible; increase interpretive signage and media exposure at areas where structures are removed such as at Edmonds parks. Offer incentives to build community docks to replace individual docks in Salmon Bay. (M11) 26 Basinwide Estuary and Nearshore</td>
<td>$20,000</td>
<td>M11</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Expand outreach about value of eelgrass beds as juvenile source of food and habitat – and the negative effects that docks, overwater structures, and bulkheads have on the eelgrass. Encourage combined docks or more salmon friendly designs that impede less sediment and let more light into water; involve community and youth in eelgrass replantings and monitoring studies. (M714, M716, M721) 27 Basinwide Estuary and Nearshore</td>
<td>$20,000</td>
<td>M714, M716, M721</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Protect stream mouths and wetlands from further degradation through Shoreline Master Programs and critical areas ordinances. Once stream mouths and wetlands are restored, protect from impacts from development through buffer requirements and stormwater management programs. (M14, M17, M18) 28 Basinwide Estuary and Nearshore</td>
<td>$40,000</td>
<td>M14, M17, M18</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Combine above restoration efforts with increased interpretive signage and video documentation for airing on government cable TV; make copies available to neighborhood and stewardship associations and encourage their participation in hands-on projects. 29e Basinwide Estuary and Nearshore</td>
<td>$20,000</td>
<td>MISSING</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Work with real estate community to help promote value of creek mouths to both property owners, environment, and shoreline community; encourage property owners to help restore them. Enlist help of neighborhood stewardship associations and Seattle Public Utility’s Creek Stewardship program. (M720) 29f Basinwide Estuary and Nearshore</td>
<td>$30,000</td>
<td>M720</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Address stormwater impacts (water quality and flows) throughout sub-area and from development near tops of bluffs, by: revising Phase 1 and 2 NPDES permits (consistent with Washington Department of Ecology’s 2001 Stormwater Management Manual), requiring or encouraging low impact development, retrofitting existing developments using natural drainage systems (e.g., SEASTreets). (M19) 30 Basinwide Estuary and Nearshore</td>
<td>$30,000</td>
<td>M19</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Determine extent to which residential structures along nearshore are on septic systems; determine if these systems are operating properly and if not require that they be fixed. Require that septic systems be inspected at time of sale. (M20) 31 Basinwide Estuary and Nearshore</td>
<td>$10,000</td>
<td>M20</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Discourage or prohibit any further filling and dredging in nearshore except for essential public facilities, and where associated with shoreline restoration projects. (M21) 32 Basinwide Estuary and Nearshore</td>
<td>$10,000</td>
<td>M21</td>
</tr>
<tr>
<td>Primary Limiting Factors Addressed</td>
<td>Start-list Programmatic Recommendations</td>
<td>High Cost Estimate</td>
<td>WRIA 8 Plan List Code</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Promote boater/sea plane education campaign in order to improve and protect water quality compromised by fuel or toxic compounds from boat repairs, boat and sea plane maintenance. Carry out through signage at marinas, sea plane docks, boat yards, as well as messaging sent with boat/plane license registration. (M728) 33 Basinwide Estuary and Nearshore</td>
<td>$5,000</td>
<td>M728</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Educate and support businesses, property management companies, and homeowners associations on stormwater best management practices, specifically related to parking lot cleaning, storm drain maintenance and road cleaning. (M730) 34 Basinwide Estuary and Nearshore</td>
<td>$5,000</td>
<td>M730</td>
</tr>
<tr>
<td>Shoreline Complexity</td>
<td>Train groundskeepers and property management companies about water polluting effects of landscape practices. Employ the “pride in workmanship” strategy, by placing signs that list who maintains the landscapes and parking lots along shorelines and the maintenance practices that they employ. (M729) 35 Basinwide Estuary and Nearshore</td>
<td>$25,000</td>
<td>M729</td>
</tr>
<tr>
<td>Passage</td>
<td>Continue to work on improving conditions at the Locks to improve juvenile Chinook outmigration. Actions could include: Take advantage of enormous outreach potential at the Locks by working with the Corp of Engineers to expand or enhance educational displays. Include information about ongoing and proposed WRIA 8 conservation efforts being both taken at the Locks and throughout the watershed, as well as actions that citizens can take to improve salmon habitat at home. 13d Basinwide Lake Union, Ship Canal, and Locks</td>
<td>$10,000</td>
<td>MISSING</td>
</tr>
</tbody>
</table>

North Lake Washington

<p>| Hydrology | Protect headwater wetlands, seeps, and groundwater recharge areas through critical areas ordinances, critical aquifer recharge area protections (CARAs), incentives, and acquisition. Support with appropriate public outreach to convey reasons behind regulations to protect groundwater sources, consequences of not employing them, and ultimate benefits to environment and people. (N1, N722, N723) 1 Basinwide Bear/Cottage Lake/Cold Creeks | $30,000 | N1, N722, N723 |
| Hydrology | Determine source of the Cold Creek groundwater springs in Cottage Lake Creek and develop protective measures to adequately protect them. Cold Creek headwaters cross the Urban Growth Boundary; growth within Woodinville should be managed to minimize impacts. (N4) 2 Basinwide Bear/Cottage Lake/Cold Creeks | $645,231 | N4 |
| Hydrology | Expand groundwater protection outreach messages to include the relationship between ground and surface water and inter-connectedness of all hydrologic systems. Include messages in water utility billings, newspaper articles, and school curricula; explore opportunities to partner with | $7,000 | N722, N723, N724 |</p>
<table>
<thead>
<tr>
<th>Primary Limiting Factors Addressed</th>
<th>Start-list Programmatic Recommendations</th>
<th>High Cost Estimate</th>
<th>WRIA 8 Plan List Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrology</td>
<td>business such as local bottled water company. (N722, N723, N724) 3 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrology</td>
<td>Continue approach taken in King County during past decade to protect forest cover and riparian buffers, including: enforcing existing regulations, providing a range of incentives and a basin steward working with streamside landowners, and providing forest stewardship plans. Support Snohomish County’s incentive programs such as Transfer of Development Rights for farmlands and Reduced Drainage Discharge Demonstration Program. Properties protected through acquisition, easements, etc. must be maintained over long term. (N7, N701, N702, N704) 4 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td>$20,000</td>
<td>N7, N701, N702, N704</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Promote low impact development throughout Tier 1 and 2 subareas, to accommodate additional growth in urban and rural areas, while protecting ecological functions. Enlist help of builders practicing sustainable development to promote benefits of forest cover in protecting water quality. Provide recognition through media and professional awards to those using pervious paving, grass/green roofs, and other low impact development techniques. Work with the Snohomish Sustainable Development Task Force and other public and private stakeholders to plan and implement low impact development techniques. (N6, N91-93, N719, N720, N721) 5 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td>$5,000</td>
<td>N6, N91-N93, N719, N720, N721</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Increase outreach concerning the benefits of trees and basinwide forest coverage to protect water quality and maintain instream flows. Coordinate with nurseries, home improvement centers, and arborists to develop a marketing campaign promoting the benefit of trees to salmon and watershed health. 6 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td>$20,000</td>
<td>MISSING</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Employ basinwide stewards to work with property owners, land trusts, and agencies in order to identify and secure forested, wetland, and riparian areas. Encourage neighborhood and community protection associations that foster the ethic of voluntary stewardship, enlist community support to purchase forest tracts and build bridges between property owners, agencies, and local governments. (N702, N704) 7 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td>$30,000</td>
<td>N702, N704</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Continue to absorb majority of growth in urban areas, while protecting and restoring forest and promoting low impact development, to maintain and improve water quality and flows. (N5) 8 Within Urban Growth Area Bear/Cottage Lake/Cold Creeks</td>
<td>$0</td>
<td>N5</td>
</tr>
<tr>
<td>Primary Limiting Factors Addressed</td>
<td>Start-list Programmatic Recommendations</td>
<td>High Cost Estimate</td>
<td>WRIA 8 Plan List Code</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>-----------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Hydrology</td>
<td>There is considerable growth pressure in Bear/Cottage Lake creeks outside the Urban Growth Area (UGA), as urban-type development and related infrastructure continue to expand (e.g., Maltby UGA, Redmond Ridge UPD, city parks). Jurisdictions should not move the UGA boundary unless such change is beneficial to salmon; they should encourage low impact development, clustering, low density livestock or garden enterprises with appropriate best management practices, and other measures to protect environmental functions in rural areas. It may be necessary to acquire high quality rural properties to insure their long-term protection. (N6) 10 Outside Urban Growth Area Bear/Cottage Lake/Cold Creeks</td>
<td>$30,000</td>
<td>N6</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Adopt and strictly enforce stream/wetland buffers and forest cover protections through King and Snohomish counties’ critical areas ordinance updates. Forest cover protections should account for site geology, soils, topography, and vegetation to maximize retention and infiltration. (N10) 11 Outside Urban Growth Area Bear/Cottage Lake/Cold Creeks</td>
<td>$50,000</td>
<td>N10</td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>Implement regulations and incentives to protect and restore riparian buffers, through critical areas ordinances and Shoreline Master Program updates; limit impacts of trails and other facilities in buffers. Implement riparian restoration by streamside landowners through King County Livestock Program, farm plans, and cost share. (N12) 13 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td>$40,000</td>
<td>N12</td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>Expand outreach to streamside property owners about shoreline landscape design, maintenance, and streambank armoring alternatives, through direct mail brochures, videos, shoreline homeowners kits (including expansion of “Streamside Living Welcome Wagon”), and workshops (including expansion of Natural Yard Care Program). (N703, N707, N708, N709, N725) 14 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td>$15,000</td>
<td>N703, N707, N708, N709, N725</td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>Offer educational opportunities to landscape designers/contractors on riparian design/installation, alternative to invasive species, and promote use of compost. (N714, N721) 15 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td>$5,000</td>
<td>N714, N721</td>
</tr>
<tr>
<td>Floodplain Connectivity</td>
<td>Limit new development in floodplains; develop and apply standards which minimize impacts to salmon. Minimize number and width of new roads through transportation planning and implementation. (N15) 19 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td>$20,000</td>
<td>N15</td>
</tr>
<tr>
<td>Floodplain Connectivity</td>
<td>Increase public awareness about the value of large woody debris and native vegetation for flood protection, salmon habitat, and healthy streams. Convey through media (e.g., local papers, community newsletters); signage along publicly accessible “model” shoreline; brochures such as King County’s Large Woody Debris and River Safety; and</td>
<td>$10,000</td>
<td>N708</td>
</tr>
<tr>
<td>Primary Limiting Factors Addressed</td>
<td>Start-list Programmatic Recommendations</td>
<td>High Cost Estimate</td>
<td>WRIA 8 Plan List Code</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>other outreach venues such as festivals and local cable channels. (N708) 20 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Identify sources and adopt source control of fine sediments and metals in mainstems and tributaries (e.g., from new construction, sand on roads, farms) through stormwater management and clearing and grading ordinances. Jurisdictions should adopt and enforce regulations and best management practices consistent with Washington Department of Ecology’s 2001 Stormwater Management Manual (or beyond), as part of the NPDES Phase 1 and Phase 2 permit requirements. Water quality problems should be addressed through stormwater programs (including low impact development BMPs), current and future TMDLs, livestock management programs, and upgrade of stormwater facilities (where possible). (N18) 27 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td>$20,000</td>
<td>N18</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Work with Washington Department of Transportation and local jurisdictions to pursue opportunities to retrofit existing roadways with stormwater best management practices to improve water quality and flows. Stormwater impacts from major transportation projects (for new and expanded roadways proposed during the next ten years) should also be addressed. (N21-22) 28 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td>$20,000</td>
<td>N21, N22</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Coordinate with local business community and non-profits to encourage the use of commercial car washes and carwash kits. Reprint and distribute water quality poster series depicting impacts of everyday practices: washing car, driving car without maintenance, leaving pet wastes unattended, and improperly using lawn chemicals. Promote stormwater best management practices related to parking lot cleaning, storm drain maintenance, and road cleaning. (N726, N727, N729, N731) 29 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td>$5,000</td>
<td>N726, N727, N729, N731</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Promote through design competitions and media coverage the use of “rain gardens” and other low impact development practices that mimic natural hydrology. Combine a home/garden tour or “Street of Dreams” type event featuring these landscape/engineering treatments. (N720, N721) 30 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td>$15,000</td>
<td>N720, N721</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Publicize emergency call numbers for public to report water quality and quantity problems, non-permitted vegetation clearing, and non-permitted in-stream grading, and wood removal incidents. (N731) 31 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td>$5,000</td>
<td>N731</td>
</tr>
<tr>
<td>Primary Limiting Factors Addressed</td>
<td>Start-list Programmatic Recommendations</td>
<td>High Cost Estimate</td>
<td>WRIA 8 Plan List Code</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Commercial/industrial areas should be investigated for water quality and runoff issues and potential stormwater facilities planned and built. (N23) 32 Within UGA Bear/Cottage Lake/Cold Creeks</td>
<td>$10,000</td>
<td>N23</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Jurisdictions should implement and enforce livestock ordinances, making highest priority those areas that are most susceptible due to fine soils. Work with farmers to adopt and implement farm plans to address water quality and habitat management. Coordinate with other stewardship and education programs, (e.g., Horses for Clean Water). (N19, N702, N713) 34 Outside Urban Growth Area Bear/Cottage Lake/Cold Creeks</td>
<td>$20,000</td>
<td>N19, N702, N713</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Adopt stormwater provisions to address high flows, flashiness, and protection of base flows, including forest retention and low impact development best management practices, to improve infiltration. (N20, N27) 36 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td>$20,000</td>
<td>N20, N27</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Work with Washington Department of Ecology, local health departments, and water suppliers on regulations, incentives, and education related to impact of surface and groundwater withdrawals, including municipal water withdrawals (e.g., City of Redmond), illegal withdrawals, and exempt wells on flow conditions throughout basin. Determine where illegal surface water withdrawals are occurring and follow-up with enforcement to ensure withdrawals do not continue. (N25-26) 37 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td>$80,000</td>
<td>N25, N26</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Increase outreach about illegal water withdrawals, including information about exempt wells (who and what purposes qualify), and maximum quantities that may be withdrawn per day. Clarify distinction between withdrawals taken from wells and diversions taken from the river without a water rights permit. Create citizen-based watchdog groups to watch for people drawing directly from creeks and streams. 38 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td>$20,000</td>
<td>N MISSING</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Promote availability of water conservation education and incentive programs (e.g., rebates for efficient toilets, free landscape irrigation audits) to decrease household, commercial, and landscaping irrigation water consumption throughout WRIA 8. (N28, N723) 39 Basinwide Bear/Cottage Lake/Cold Creeks</td>
<td>$0</td>
<td>N28, N723</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Address water quality issues, including temperature and pesticides/herbicides, through stormwater regulations (including NPDES permits), best management practices (including low impact development), education, and incentives targeted at agricultural, commercial, industrial, and residential landowners. (N34-37) 40 Basinwide Sammamish</td>
<td>$10,000</td>
<td>N34, N37</td>
</tr>
<tr>
<td>Primary Limiting Factors Addressed</td>
<td>Start-list Programmatic Recommendations</td>
<td>High Cost Estimate</td>
<td>WRIA 8 Plan List Code</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>-------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Work with Washington Department of Ecology, local health departments, and water suppliers to address municipal water withdrawals, illegal withdrawals, exempt wells that impact Sammamish River flows and related high temperatures. Research potential for reclaimed water facilities, shifting of municipal water supply sources to maximize summer flows, and extent of impacts from agricultural, commercial, and industrial sectors. (N29-30, N33) 41</td>
<td>$0</td>
<td>N29, N30, N33</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Bolster water conservation outreach in Sammamish watershed to increase and maintain summer base flows and reduce summer water temperatures. Carry out through incentive programs (e.g., rebates for efficient appliances, toilets, free landscape irrigation audits); classes on native drought-tolerant landscaping; and waterless carwash promotions. (N733, N734) 42 Basinwide Sammamish</td>
<td>$0</td>
<td>N733, N734</td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>Encourage bank regrading and revegetation of riparian buffers (on mainstem and tributaries) during new construction and redevelopment in exchange for regulatory flexibility and incentives, such as providing expertise, expediting permitting, and tax breaks. (N42-43) 43 Basinwide Sammamish</td>
<td>$10,000</td>
<td>N42, N43</td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>Given the high public use of the Sammamish River trail, restoration projects on the Sammamish River are highly visible and provide good public outreach opportunities. Enhance interpretive efforts on projects and encourage media coverage. Continue to use citizen volunteers to assist in restoration and maintenance of project sites. (N710, N711) 46 Basinwide Sammamish</td>
<td>$20,000</td>
<td>N710, N711</td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>Encourage neighborhood garden tours of salmon friendly gardens to help residents visualize alternatives to traditional, less eco-friendly landscape treatments. Integrate native plant salvage opportunities into Naturescaping classes, allowing class participants to take home native plants for immediate use both within and surrounding sensitive areas. (N716) 53 Basinwide Sammamish</td>
<td>$10,000</td>
<td>N716</td>
</tr>
<tr>
<td>North Lake Washington Tier II</td>
<td>Tremendous growth pressure exists in Little Bear subarea. Jurisdictions should not move the Urban Growth Area (UGA) boundary, unless such change is beneficial to salmon. Jurisdictions should protect remaining watershed function by managing any additional growth in rural areas through incentives and regulations for forest retention, low impact development, clustering to protect natural areas, transferable development rights, etc. and acquisition where regulation and incentives do not provide sufficient protection. (N67) 55 Little Bear Tier 2</td>
<td>$20,000</td>
<td>N67</td>
</tr>
<tr>
<td>Primary Limiting Factors Addressed</td>
<td>Start-list Programmatic Recommendations</td>
<td>High Cost Estimate</td>
<td>WRIA 8 Plan List Code</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Inadequate base flows, flooding, and flashy hydrology pose serious problems in North Creek. Address these through stormwater management (e.g., improved retention of high flows and increased infiltration), improved information about and enforcement of surface and groundwater withdrawals, TMDL implementation, more aggressive water conservation, etc. (N107) 61 North Creek Tier 2</td>
<td>$10,000</td>
<td>N107</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Protect remaining forest cover and wetlands through critical areas ordinances, stormwater regulations and best management practices, incentives (e.g., tax breaks, expedited permitting), and acquisition where regulation and incentives are not sufficient protection. There are undeveloped forested areas and wetlands in the following reaches: Lower North reaches 4, 3, 2 and Upper North reaches 10, 9, 6, 7. (Note: Reaches listed in EDT priority order). (N71, N376, N372, N370, N371, N396, N393, N385, N389) 62 North Creek Tier 2</td>
<td>$10,000</td>
<td>N71, N376, N372, N370, N371, N396, N393, N385, N389</td>
</tr>
</tbody>
</table>

Issaquah

<p>| Hydrology | Support Issaquah’s proposed critical aquifer recharge area (CARA) provisions that incorporate groundwater quality protections in well head capture zones and a broader protection area where infiltration will be required for groundwater recharge. (I19) 1 Within Urban Growth Area | $0 | I19 |
| Hydrology | Protect headwaters and groundwater through variety of tools: wetland buffers, CARA protections, stormwater infiltration regulations (including low impact development), forest clearing restrictions, recommendations in King County’s 2003 Taylor Mountain Forest Stewardship Plan and forest stewardship plans. (I16-17) 3 Outside Urban Growth Area | $20,000 | I16, I17 |
| Hydrology | Protect existing natural flow regime in the headwaters areas of Carey and Holder creeks, which are in the Tiger Mountain State Forest and Taylor Mountain County Forest vicinity, by acquiring forest property, development rights/conservation easements. Provide enhanced incentives to retain and plant forest area environments (Carey Creek Reaches 3, 4 and Holder Creek Reach 3). (I5-7) 4 Outside Urban Growth Area | $0 | I5, I6, I7 |
| Hydrology | Encourage low impact development (including low density livestock or garden enterprises) through regulations, incentives, and education/training. Support basin liaison position to set up training and information sharing among planners, developers, and scientists about hands-on aspects of low impact development best management practices, including marketing, permitting, and technical issues. (I3, I715, I719, I720, I722) 5 Basinwide | $30,000 | I3, I715, I719, I720, I722 |</p>
<table>
<thead>
<tr>
<th>Primary Limiting Factors Addressed</th>
<th>Start-list Programmatic Recommendations</th>
<th>High Cost Estimate</th>
<th>WRIA 8 Plan List Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrology</td>
<td>Offer existing and new incentives to continue to protect and restore conditions beyond those which are protected through regulations. Incentives include current use taxation programs (e.g., King County’s Public Benefit Rating System and Timberland Program), transferable development rights programs. (I5, I701)</td>
<td>$20,000</td>
<td>I5, I701</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Sponsor design competitions for innovative low impact development features, including clustered development, greater forest cover, reduced impervious pavement, green roofs. Combine a home/garden tour or “Street of Dreams” type event featuring these landscape/engineering treatments. (I720, I722)</td>
<td>$20,000</td>
<td>I720, I722</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Employ basinwide stewards and farm planners/livestock stewards to work with property owners, land trusts, and agencies in order to identify and secure forested, wetland, and riparian areas, and to encourage the best management practices for those held in private ownership. (I701, I702)</td>
<td>$25,000</td>
<td>I701, I702</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Encourage neighborhood and community protection associations that foster the ethic of voluntary stewardship; gain community support for forest land acquisition; and build bridges between property owners, agencies, and local governments. Continue the Issaquah Action Basin Action Team and expand to include more community representation from East Fork communities and the Upper Issaquah Basin. (I711, I716, I717)</td>
<td>$15,000</td>
<td>I711, I716, I717</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Consistent with the Growth Management Act, Issaquah will continue to absorb most new residential, commercial, industrial growth. Control new development to minimize impacts on water quality, instream flows, and riparian buffers by encouraging low impact development through 3-tiered approach: 1) revise existing codes; 2) provide technical information to developers; 3) promote demonstration projects through incentives, technical assistance. (I12-13)</td>
<td>$0</td>
<td>I12, I13</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Promote comprehensive approach taken in Bear Creek basin during past decade to include: strictly enforced regulations (e.g., clearing restrictions, riparian buffers, and stewardship plans in King County’s updated critical areas ordinance), King County basin steward doing targeted outreach to streamside landowners, and a range of incentives (i.e., acquisition, PBRS program, conservation easements). Forest cover protections should account for site geology, soils, topography, and vegetation to maximize retention and infiltration. (I2, I4, I727)</td>
<td>$50,000</td>
<td>I2, I4, I727</td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>Protect riparian buffers through critical areas ordinances, offer incentives (Public Benefit Rating System, easements) for private property owners to protect buffers and/or revegetate and remove channel confinement. Protect and restore riparian corridors by implementing</td>
<td>$20,000</td>
<td>I28, I30</td>
</tr>
<tr>
<td>Primary Limiting Factors Addressed</td>
<td>Start-list Programmatic Recommendations</td>
<td>High Cost Estimate</td>
<td>WRIA 8 Plan List Code</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>required fencing/set asides and options for planting and cost share provided by the King County Livestock Program. (I28, I30) 14 Basinwide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>Continue and expand Creekside Landowner Assistance Program including classes, technical and financial assistance in shoreline landscape design, maintenance, and streambank armoring alternatives. In addition to workshops, convey through direct mailing of brochures, videos, and expansion of “Streamside Living Welcome Wagon” where residents welcome new home owners and provide information concerning salmon-friendly yard care, etc. (I702, I704, I709) 15 Basinwide</td>
<td>$15,000</td>
<td>I702, I704, I709</td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>Offer educational opportunities to landscape designers/contractors on riparian design/installation, alternatives to invasive species, and use of compost. (I713) 16 Basinwide</td>
<td>$5,000</td>
<td>I713</td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>Continue to tighten regulations affecting riparian buffers, including more restricted application of buffer averaging, fewer allowable uses in buffers. However, nonconforming uses will continue to be a great challenge; in order to decrease level of nonconformity over the long term, jurisdictions should encourage/require that development come into conformity, depending on degree of redevelopment. (I25-26) 17 Within Urban Growth Area</td>
<td>$0</td>
<td>I25, I26</td>
</tr>
<tr>
<td>Floodplain Connectivity</td>
<td>Limit new development and roads in floodplains; develop and apply standards which minimize impacts to salmon. Planning for new roads, and maintenance and retrofitting of existing roads, should minimize impacts on floodplains and water quality. (I38-40, I49) 18 Basinwide</td>
<td>$30,000</td>
<td>I38, I39, I40, I49</td>
</tr>
<tr>
<td>Floodplain Connectivity</td>
<td>Increase public awareness of the value of large woody debris and vegetated areas for flood protection, salmon protection and healthy streams in print (e.g., local papers, community newsletters, signage) and other means (e.g., Issaquah Salmon Days, Sammamish Watershed Festival activities, local cable channels, hatchery docent presentations). (I705) 19 Basinwide</td>
<td>$7,000</td>
<td>I705</td>
</tr>
<tr>
<td>Floodplain Connectivity</td>
<td>Consider flexibility in prescriptive buffer width standards in exchange for stream habitat and buffer enhancement during redevelopment. However, limit buffer width reductions for new development because a key issue for Issaquah Creek is encroachment into floodplain and channel confinement, and revegetation does not improve this riparian function. (I29) 20 Within Urban Growth Area</td>
<td>$0</td>
<td>I29</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Identify water quality problems and address through stormwater management programs (including low impact development best management practices), current and future TMDLs, livestock management programs, upgrade of stormwater facilities (where possible), and retrofit of existing roadways to improve water quality and flows (e.g., SR-18, I-90). Jurisdictions should adopt and enforce regulations and best management practices consistent</td>
<td>$20,000</td>
<td>I31, I32, I36, I41</td>
</tr>
<tr>
<td>Primary Limiting Factors Addressed</td>
<td>Start-list Programmatic Recommendations</td>
<td>High Cost Estimate</td>
<td>WRIA 8 Plan List Code</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>with Washington Department of Ecology’s 2001 Stormwater Management Manual (or beyond), as part of the NPDES Phase 1 and Phase 2 permit requirements. (I31-32, I36, I41)</td>
<td>$30,000</td>
<td>I712</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>King County should implement and enforce livestock ordinance, making highest priority those areas that are most susceptible due to fine soils. Work with farmers to adopt and implement farm plans which address water quality and fish and wildlife habitat management and restoration. Coordinate with other stewardship and education programs, e.g., Horses for Clean Water and Backcountry Horsemen. (I24, I712)</td>
<td>$30,000</td>
<td>I712</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Run Natural Yard Care Neighborhoods Program and other landscaping education opportunities in communities in the Issaquah Basin. Increase visitation of basin residents to Pickering Farm Community Teaching Garden. (I723)</td>
<td>$7,000</td>
<td>I723</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Publicize emergency call numbers for public to report water quality and quantity problems, non-permitted vegetation clearing, and non-permitted instream grading and wood removal incidents. (I729)</td>
<td>$5,000</td>
<td>I729</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Coordinate with local business community and non-profits to encourage the use of commercial car washes and carwash kits. Reprint and distribute water quality poster series depicting impacts of everyday practices: washing car, driving car without maintenance, leaving pet wastes unattended, and improperly using lawn chemicals. (I724)</td>
<td>$5,000</td>
<td>I724</td>
</tr>
<tr>
<td>Water and Sediment Quality</td>
<td>Educate and support businesses, property management companies and homeowners associations on stormwater best management practices, specifically related to parking lot cleaning, storm drain maintenance, and road cleaning. (I725)</td>
<td>$5,000</td>
<td>I725</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Work with Washington Department of Ecology, local health departments, and water suppliers on regulations, incentives, and education related to impact of municipal water withdrawals, illegal withdrawals, exempt wells on flow conditions throughout basin. Determine where illegal surface water withdrawals are occurring and follow-up with enforcement to ensure withdrawals do not continue. Develop public information about exempt wells, differences between water drawn from wells versus water diverted from streams without water rights permits, and support enforcement through development of citizen-based watchdog groups. (I44-46)</td>
<td>$80,000</td>
<td>I44, I45, I46</td>
</tr>
<tr>
<td>Hydrology</td>
<td>Adopt and enforce stormwater provisions to address high flows and protection of base flows, including forest retention and low impact development best management practices. Encourage rainwater harvesting and graywater capturing for reuse in landscaping irrigation through</td>
<td>$20,000</td>
<td>I47, I723, I728</td>
</tr>
<tr>
<td>Primary Limiting Factors Addressed</td>
<td>Start-list Programmatic Recommendations</td>
<td>High Cost Estimate</td>
<td>WRIA 8 Plan List Code</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Hydrology</td>
<td>demonstration projects, workshops and educational materials, (I47, I723, I728) 41 Basinwide</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Continue and/or extend availability of water conservation incentive programs (such as rebates for efficient toilets, appliances, free indoor conservation kits, free landscape irrigation audits); outreach on rainwater harvesting, and graywater capturing for reuse in landscape irrigation. Support conservation efforts within the Cascade Water Alliance and work to coordinate the various water policy and decision makers. (I721, I728) 42 Basinwide</td>
<td>$0</td>
<td>I721, I728</td>
</tr>
</tbody>
</table>